Multispectral remote sensing of the Gosses Bluff impact crater, central Australia (NT) by using Landsat-TM and ERS-1 data

被引:11
|
作者
Prinz, T
机构
[1] Institute for Geology, Westphalian-Wilhelms University of Münster, D-48149 Münster
关键词
D O I
10.1016/0924-2716(95)00007-0
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Remote sensing techniques offer a unique chance to analyse and to map planetary impact craters in a relatively short time and at low cost. In the past, studies were mainly restricted to the search for possible impact sites (e.g. Earth) or for age determinations (crater statistics). On the basis of Landsat-TM 5 and ERS-1 data the lithological and structural characteristics of the complex Gosses Bluff impact crater (Australia) has been analysed in order to obtain reasonable lithological classification approaches. The fundamental statistical selection rule for pure colour composites of original TM-data was the calculation of the optimum index factor (OIF), or for hybrid colour composites (e.g. a combination of a original TM-band with a principal component and a ratio) using the widest statistical variance for each dataset. Additional spectral measurements were carried out for each representative rock unit of the crater specific zones in order to estimate the quality of supervised maximum-likelihood computer classifications for geological mapping. Complementary ERS-1 altimetric data were utilized to study the resulting crater morphology as an expression of the displacement effects and some structural features of the target caused by the cratering process (e.g. diameter, fracture pattern, ejecta displacement, etc.).
引用
收藏
页码:137 / 149
页数:13
相关论文
共 11 条
  • [1] Multispectral remote sensing of the Gosses Bluff impact crater, central Australia (NT) by using Landsat-TM and ERS-1 data
    Inst for Geology, Univ of Munster, Corrensstr. 24, Munster D-4812249, Germany
    ISPRS J Photogramm Remote Sensing, 3 (137-149):
  • [2] Tundra ecosystems parameters documentation with use ″Almaz″, ERS-1, ″Landsat-TM″ satellite data
    Bel'chaniskij, G.I.
    Kozlenko, N.N.
    Ovchinnikov, G.K.
    Shevchenko, V.I.
    Issledovanie Zemli iz Kosmosa, 1994, (04): : 81 - 87
  • [3] DOCUMENTATION OF THE PARAMETERS OF TUNDRA ECOSYSTEMS WITH THE USE OF ALMAZ, ERS-1, AND LANDSAT-TM SATELLITE DATA
    BELCHANSKII, GI
    KOZLENKO, NN
    OVCHINNIKOV, GK
    SHEVCHENKO, VI
    EARTH OBSERVATION AND REMOTE SENSING, 1995, 12 (04): : 579 - 588
  • [4] Preliminary results of landcover analysis of Calanda area using ERS-1/2 SAR and Landsat-TM data
    Valverde, A
    de la Vega, R
    Garcia, R
    Gonzalez, C
    Moreno, V
    Martinez, A
    Kyun, IA
    THIRD ERS SYMPOSIUM ON SPACE AT THE SERVICE OF OUR ENVIRONMENT, VOL 1, 1997, 414 : 289 - 293
  • [5] Documentation of the parameters of tundra ecosystems with the use of `Almaz', Ers-1, and `Landsat-TM' satellite data
    Bel'chanskii, G.I.
    Kozlenko, N.N.
    Ovchinnikov, G.K.
    Shevchenko, V.I.
    Earth Observation and Remote Sensing, 1995, 12 (04):
  • [6] COMPARATIVE VALIDITY ESTIMATION OF ERS-1, ALMAZ, AND LANDSAT-TM SATELLITE DATA FOR DOCUMENTATION OF TUNDRA ECOSYSTEMS
    BELCHANSKII, GI
    OVCHINNIKOV, GK
    SHEVCHENKO, VI
    DOUGLAS, D
    EARTH OBSERVATION AND REMOTE SENSING, 1995, 12 (03): : 366 - 377
  • [7] Roughness parameter derivation from ERS-1 and Landsat-TM satellite data for the agglomeration of Basel/Switzerland
    Scherer, D
    Parlow, E
    Beha, HD
    PROGRESS IN ENVIRONMENTAL REMOTE SENSING RESEARCH AND APPLICATIONS, 1996, : 325 - 329
  • [8] High alpine snow cover monitoring using ERS-1 SAR and Landsat TM data
    Haefner, H
    Piesbergen, J
    REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS FOR DESIGN AND OPERATION OF WATER RESOURCES SYSTEMS, 1997, (242): : 113 - 118
  • [9] Comparison of algorithms for classifying Swedish landcover using Landsat TM and ERS-1 SAR data
    Michelson, DB
    Liljeberg, BM
    Pilesjö, P
    REMOTE SENSING OF ENVIRONMENT, 2000, 71 (01) : 1 - 15
  • [10] High Alpine snow cover monitoring using ERS-1 SAR and Landsat TM data
    RSL Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
    IAHS Publ, 242 (113-118):