POROSITY, DIMENSION, AND LOCAL ENTROPIES: A SURVEY

被引:0
|
作者
Shmerkin, Pablo [1 ]
机构
[1] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
来源
REVISTA DE LA UNION MATEMATICA ARGENTINA | 2011年 / 52卷 / 02期
关键词
ITERATED FUNCTION SYSTEMS; CONICAL UPPER DENSITY; POROUS MEASURES; PACKING DIMENSION; MEAN POROSITY; JULIA SETS; R-N;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Porosity and dimension are two useful, but different, concepts that quantify the size of fractal sets and measures. An active area of research concerns understanding the relationship between these two concepts. In this article we will survey the various notions of porosity of sets and measures that have been proposed, and how they relate to dimension. Along the way, we will introduce the idea of local entropy averages, which arose in a different context, and was then applied to obtain a bound for the dimension of mean porous measures.
引用
收藏
页码:81 / 103
页数:23
相关论文
共 50 条
  • [41] Perceptual image hashing using local entropies and DWT
    Tang, Z. J.
    Zhang, X. Q.
    Dai, Y. M.
    Lan, W. W.
    IMAGING SCIENCE JOURNAL, 2013, 61 (02): : 241 - 251
  • [42] Correlations and characterization of porous solids by fractal dimension and porosity
    Huang, S.J.
    Yu, Y.C.
    Lee, T.Y.
    Lu, T.S.
    Physica A: Statistical Mechanics and its Applications, 1999, 274 (03): : 419 - 432
  • [43] Correlations and characterization of porous solids by fractal dimension and porosity
    Huang, SJ
    Yu, YC
    Lee, TY
    Lu, TS
    PHYSICA A, 1999, 274 (3-4): : 419 - 432
  • [44] Comparing Dushnik-Miller Dimension, Boolean Dimension and Local Dimension
    Fidel Barrera-Cruz
    Thomas Prag
    Heather C. Smith
    Libby Taylor
    William T. Trotter
    Order, 2020, 37 : 243 - 269
  • [45] Comparing Dushnik-Miller Dimension, Boolean Dimension and Local Dimension
    Barrera-Cruz, Fidel
    Prag, Thomas
    Smith, Heather C.
    Taylor, Libby
    Trotter, William T.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2020, 37 (02): : 243 - 269
  • [46] Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs
    Rodriguez-Velazquez, Juan A.
    Garcia Gomez, Carlos
    Barragan-Ramirez, Gabriel A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (04) : 686 - 693
  • [47] A Brief Survey of Dimension Reduction
    Song, Li
    Ma, Hongbin
    Wu, Mei
    Zhou, Zilong
    Fu, Mengyin
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 189 - 200
  • [48] MICROSTRUCTURAL SENSITIVITY OF LOCAL POROSITY DISTRIBUTIONS
    BOGER, F
    FEDER, J
    JOSSANG, T
    HILFER, R
    PHYSICA A, 1992, 187 (1-2): : 55 - 70
  • [49] A Survey on the Hausdorff Dimension of Intersections
    Mattila, Pertti
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2023, 28 (02)
  • [50] DYNAMICS IN DIMENSION ZERO A SURVEY
    Downarowicz, Tomasz
    Karpel, Olena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (03) : 1033 - 1062