Stable α-FAPbI3 in Inverted Perovskite Solar Cells with Efficiency Exceeding 22% via a Self-Passivation Strategy

被引:75
|
作者
Zhang, Diwei [1 ]
Zhang, Huidong [1 ]
Guo, Huanxin [1 ]
Ye, Fangyuan [1 ]
Liu, Shuaijun [1 ]
Wu, Yongzhen [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Mat & Joint Int Res Lab Precis Chem &, Frontiers Sci Ctr Mat & Dynam Chem,Inst Fine Chem, Shanghai Key Lab Funct Mat Chem,Sch Chem & Mol En, Shanghai 200237, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
defect passivation; formamidinium lead iodide; inverted perovskite solar cells; methylammonium chloride; phase stability; HALIDE PEROVSKITES; HIGHLY EFFICIENT; MU-S; PERFORMANCE; PHASE; STABILITY; CATIONS;
D O I
10.1002/adfm.202200174
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Formamidinium lead iodide (FAPbI(3)) has endowed power conversion efficiencies (PCEs) up to 25.5% in regular-structured perovskite solar cells (PSCs) because of its optimal bandgap and enhanced thermal stability. However, the performance of FAPbI(3)-based inverted-structured PSCs is unsatisfactory. Herein, four kinds of commonly used hole transport materials (HTMs) are selected, including PEDOT:PSS, PTAA, NiOx, and MeO-2PACz, to study their impact on the methylamine chloride (MACl)-assisted one-step deposition of FAPbI(3) films. It is found that MeO-2PACz is the optimal substrate for stabilizing black-phase FAPbI(3) and the corresponding inverted-structured PSCs show the best photovoltaic performance. Nonetheless, the PCE is restricted by low open-circuit voltage (V-OC) due to non-radiative recombination caused by MACl residues. Therefore, homologous PbI2 in situ passivation is implemented to passivate defects at grain boundaries. The addition of excess PbI2 in precursor solution remarkably decreases charge trap densities and elongates carrier lifetimes. As a result, the optimized device achieves an impressive PCE of 22.13%, which is the highest efficiency of FAPbI(3) based on inverted-structured PSCs. Moreover, the best device exhibits free hysteresis and excellent long-term stability, maintaining 92% of the initial PCEs after 800 h aging under ambient conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells
    Xue, Jingjing
    Lee, Jin-Wook
    Dai, Zhenghong
    Wang, Rui
    Nuryyeva, Selbi
    Liao, Michael E.
    Chang, Sheng-Yung
    Meng, Lei
    Meng, Dong
    Sun, Pengyu
    Lin, Oliver
    Goorsky, Mark S.
    Yang, Yang
    JOULE, 2018, 2 (09) : 1866 - 1878
  • [22] A Novel Fabrication Approach for Improving the Efficiency of FAPbI3 Based Perovskite Solar Cells
    Pirzada, N.
    Narejo, G. B.
    Shah, S. U. A.
    Qasuria, T. A. K.
    JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2022, 44 (02): : 149 - 159
  • [23] Research Progress on Stability of FAPbI3 Perovskite Solar Cells
    Deng, Wenxin
    Wei, Jianwei
    Ma, Zengwei
    Feng, Wenlin
    CRYSTAL RESEARCH AND TECHNOLOGY, 2025, 60 (02)
  • [24] Phase-Pure α-FAPbI3 for Perovskite Solar Cells
    Niu, Tingting
    Chao, Lingfeng
    Dong, Xue
    Fu, Li
    Chen, Yonghua
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (07): : 1845 - 1854
  • [25] Thermally Stable Passivation toward High Efficiency Inverted Perovskite Solar Cells
    Oliver, Robert D. J.
    Lin, Yen-Hung
    Horn, Alexander J.
    Xia, Chelsea Q.
    Warby, Jonathan H.
    Johnston, Michael B.
    Ramadan, Alexandra J.
    Snaith, Henry J.
    ACS ENERGY LETTERS, 2020, 5 (11) : 3336 - 3343
  • [26] Sequential Evaporation of Inverted FAPbI3 Perovskite Solar Cells - Impact of Substrate on Crystallization and Film Formation
    Diercks, Alexander
    Petry, Julian
    Feeney, Thomas
    Singh, Roja
    Zhao, Tonghan
    Hu, Hang
    Li, Yang
    Paetzold, Ulrich W.
    Fassl, Paul
    ACS ENERGY LETTERS, 2025,
  • [27] Surface Passivation with Tailoring Organic Potassium Salt for Efficient FAPbI3 Perovskite Solar Cells and Modules
    Zhang, Shujie
    Tian, Ting
    Li, Jing
    Su, Zhiwei
    Jin, Chengkai
    Su, Jie
    Li, Wenke
    Yuan, Ye
    Tong, Jinhui
    Peng, Yong
    Bai, Sai
    Mueller-Buschbaum, Peter
    Huang, Fuzhi
    Cheng, Yi-Bing
    Bu, Tongle
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (36)
  • [28] Chemical Linkage and Passivation at Buried Interface for Thermally Stable Inverted Perovskite Solar Cells with Efficiency over 22%
    Tan, Ying
    Chang, Xueqing
    Zhong, Jun-Xing
    Feng, Wenhuai
    Yang, Meifang
    Tian, Tian
    Gong, Li
    Wu, Wu-Qiang
    CCS CHEMISTRY, 2023, 5 (08): : 1802 - 1814
  • [29] Sequential Evaporation of Inverted FAPbI3 Perovskite Solar Cells - Impact of Substrate on Crystallization and Film Formation
    Diercks, Alexander
    Petry, Julian
    Feeney, Thomas
    Singh, Roja
    Zhao, Tonghan
    Hu, Hang
    Li, Yang
    Paetzold, Ulrich W.
    Fassl, Paul
    ACS ENERGY LETTERS, 2025, 10 (03): : 1165 - 1173
  • [30] Thermally controlled growth of photoactive FAPbI3 films for highly stable perovskite solar cells
    Sanchez, Sandy
    Cacovich, Stefania
    Vidon, Guillaume
    Guillemoles, Jean-Francois
    Eickemeyer, Felix
    Zakeeruddin, Shaik M.
    Schawe, Jurgen E. K.
    Loffler, Jorg F.
    Cayron, Cyril
    Schouwink, Pascal
    Graetzel, Michael
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (09) : 3862 - 3876