Big Data in cardiac surgery: real world and perspectives

被引:7
|
作者
Montisci, Andrea [1 ]
Palmieri, Vittorio [2 ]
Vietri, Maria Teresa [3 ]
Sala, Silvia [4 ]
Maiello, Ciro [2 ]
Donatelli, Francesco [5 ,6 ]
Napoli, Claudio [7 ]
机构
[1] ASST Spedali Civili, Div Cardiothorac Intens Care, Cardiothorac Dept, I-25123 Brescia, Italy
[2] Azienda Osped Colli Monaldi Cotugno CTO, Dept Cardiac Surg & Transplantat, Naples, Italy
[3] Univ Campania Luigi Vanvitelli, Dept Precis Med, Naples, Italy
[4] Univ Brescia, Div Anesthesiol Intens Care & Emergency Med, Brescia, Italy
[5] Ist Clin St Ambrogio, Dept Cardiac Surg, Milan, Italy
[6] Univ Milan, Chair Cardiac Surg, Milan, Italy
[7] Univ Campania Luigi Vanvitelli, Univ Dept Adv Clin & Surg Sci, Clin Dept Internal Med & Specialist, Naples, Italy
关键词
Big Data; Cardiac surgery; Artificial intelligence; Machine learning; Coronary revascularization; Valvular heart diseases; Heart failure; Left ventricular assist devices; PERCUTANEOUS CORONARY INTERVENTION; VENTRICULAR ASSIST DEVICE; ARTIFICIAL-INTELLIGENCE; PRECISION MEDICINE; NETWORK MEDICINE; HEART; CLASSIFICATION; PREDICTION; QUANTIFICATION; VALIDATION;
D O I
10.1186/s13019-022-02025-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Big Data, and the derived analysis techniques, such as artificial intelligence and machine learning, have been considered a revolution in the modern practice of medicine. Big Data comes from multiple sources, encompassing electronic health records, clinical studies, imaging data, registries, administrative databases, patient-reported outcomes and OMICS profiles. The main objective of such analyses is to unveil hidden associations and patterns. In cardiac surgery, the main targets for the use of Big Data are the construction of predictive models to recognize patterns or associations better representing the individual risk or prognosis compared to classical surgical risk scores. The results of these studies contributed to kindle the interest for personalized medicine and contributed to recognize the limitations of randomized controlled trials in representing the real world. However, the main sources of evidence for guidelines and recommendations remain RCTs and meta-analysis. The extent of the revolution of Big Data and new analytical models in cardiac surgery is yet to be determined.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Cost Analysis of Aprotinin Reintroduction in French Cardiac Surgery Centres: A Real-World Data-Based Analysis
    Pascal Colson
    Jean-Luc Fellahi
    Philippe Gaudard
    Sophie Provenchère
    Bertrand Rozec
    [J]. Advances in Therapy, 2023, 40 (4) : 1803 - 1817
  • [42] Cost Analysis of Aprotinin Reintroduction in French Cardiac Surgery Centres: A Real-World Data-Based Analysis
    Colson, Pascal
    Fellahi, Jean-Luc
    Gaudard, Philippe
    Provenchere, Sophie
    Rozec, Bertrand
    [J]. ADVANCES IN THERAPY, 2023, 40 (04) : 1803 - 1817
  • [43] Perspectives in endoscopic cardiac surgery
    Jacobs, Stephan
    Falk, Volkmar
    Holzhey, David
    Mohr, Friedrich W.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (10) : 1374 - 1376
  • [44] Big Data, Small World
    Raden, Neil
    [J]. FORBES, 2013, 191 (09): : 118 - +
  • [45] Thriving in a Big Data World
    Hayashi, Alden M.
    [J]. MIT SLOAN MANAGEMENT REVIEW, 2014, 55 (02) : 35 - 39
  • [46] Real-World Data and Machine Learning to Predict Cardiac Amyloidosis
    Garcia-Garcia, Elena
    Maria Gonzalez-Romero, Gracia
    Martin-Perez, Encarna M.
    Zapata Cornejo, Enrique de Dios
    Escobar-Aguilar, Gema
    Cardenas Bonnet, Marlon Felix
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (03) : 1 - 15
  • [47] Impact of transfer status on real-world outcomes in nonelective cardiac surgery
    Beller, Jared P.
    Hawkins, Robert B.
    Mehaffey, J. Hunter
    Chancellor, William Z.
    Fonner, Clifford E.
    Speir, Alan M.
    Quader, Mohammed A.
    Rich, Jeffrey B.
    Yarboro, Leora T.
    Teman, Nicholas R.
    Ailawadi, Gorav
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2020, 159 (02): : 540 - 548
  • [48] Real-world evidence research based on big data: Motivation—challenges—success factors; [Real-World-Evidence-Forschung auf Basis von Big Data: Motivation – Herausforderungen – Erfolgsfaktoren]
    Maissenhaelter B.E.
    Woolmore A.L.
    Schlag P.M.
    [J]. Der Onkologe, 2018, 24 (Suppl 2): : 91 - 98
  • [49] Big Data in Colorectal Surgery
    Holubar, Stefan D.
    [J]. CLINICS IN COLON AND RECTAL SURGERY, 2019, 32 (01) : 3 - 4
  • [50] Perspectives on Bayesian Methods and Big Data
    Greg M. Allenby
    Eric T. Bradlow
    Edward I. George
    John Liechty
    Robert E. McCulloch
    [J]. Customer Needs and Solutions, 2014, 1 (3) : 169 - 175