Big Data in cardiac surgery: real world and perspectives

被引:7
|
作者
Montisci, Andrea [1 ]
Palmieri, Vittorio [2 ]
Vietri, Maria Teresa [3 ]
Sala, Silvia [4 ]
Maiello, Ciro [2 ]
Donatelli, Francesco [5 ,6 ]
Napoli, Claudio [7 ]
机构
[1] ASST Spedali Civili, Div Cardiothorac Intens Care, Cardiothorac Dept, I-25123 Brescia, Italy
[2] Azienda Osped Colli Monaldi Cotugno CTO, Dept Cardiac Surg & Transplantat, Naples, Italy
[3] Univ Campania Luigi Vanvitelli, Dept Precis Med, Naples, Italy
[4] Univ Brescia, Div Anesthesiol Intens Care & Emergency Med, Brescia, Italy
[5] Ist Clin St Ambrogio, Dept Cardiac Surg, Milan, Italy
[6] Univ Milan, Chair Cardiac Surg, Milan, Italy
[7] Univ Campania Luigi Vanvitelli, Univ Dept Adv Clin & Surg Sci, Clin Dept Internal Med & Specialist, Naples, Italy
关键词
Big Data; Cardiac surgery; Artificial intelligence; Machine learning; Coronary revascularization; Valvular heart diseases; Heart failure; Left ventricular assist devices; PERCUTANEOUS CORONARY INTERVENTION; VENTRICULAR ASSIST DEVICE; ARTIFICIAL-INTELLIGENCE; PRECISION MEDICINE; NETWORK MEDICINE; HEART; CLASSIFICATION; PREDICTION; QUANTIFICATION; VALIDATION;
D O I
10.1186/s13019-022-02025-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Big Data, and the derived analysis techniques, such as artificial intelligence and machine learning, have been considered a revolution in the modern practice of medicine. Big Data comes from multiple sources, encompassing electronic health records, clinical studies, imaging data, registries, administrative databases, patient-reported outcomes and OMICS profiles. The main objective of such analyses is to unveil hidden associations and patterns. In cardiac surgery, the main targets for the use of Big Data are the construction of predictive models to recognize patterns or associations better representing the individual risk or prognosis compared to classical surgical risk scores. The results of these studies contributed to kindle the interest for personalized medicine and contributed to recognize the limitations of randomized controlled trials in representing the real world. However, the main sources of evidence for guidelines and recommendations remain RCTs and meta-analysis. The extent of the revolution of Big Data and new analytical models in cardiac surgery is yet to be determined.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Big Data in cardiac surgery: real world and perspectives
    Andrea Montisci
    Vittorio Palmieri
    Maria Teresa Vietri
    Silvia Sala
    Ciro Maiello
    Francesco Donatelli
    Claudio Napoli
    [J]. Journal of Cardiothoracic Surgery, 17
  • [2] THE ROLE OF BIG DATA AND REAL WORLD DATA
    Sledge, George W.
    [J]. BREAST, 2019, 48 : S22 - S22
  • [3] Real-world evaluation of enhanced recovery after surgery: big data under the microscope
    McIsaac, Daniel I.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2020, 124 (05) : 510 - 512
  • [4] Real World-Big Data Analytics in Healthcare
    Piovani, Daniele
    Bonovas, Stefanos
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (18)
  • [5] Perspectives on High-Performance Computing in a Big Data World
    Fox, Geoffrey C.
    [J]. HPDC'19: PROCEEDINGS OF THE 28TH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, 2019, : 145 - 145
  • [6] Using big data to predict collective behavior in the real world
    Moat, Helen Susannah
    Preis, Tobias
    Olivola, Christopher Y.
    Liu, Chengwei
    Chater, Nick
    [J]. BEHAVIORAL AND BRAIN SCIENCES, 2014, 37 (01) : 92 - 93
  • [7] Real world big data for clinical research and drug development
    Singh, Gurparkash
    Schulthess, Duane
    Hughes, Nigel
    Vannieuwenhuyse, Bart
    Kalra, Dipak
    [J]. DRUG DISCOVERY TODAY, 2018, 23 (03) : 652 - 660
  • [8] Integration of high-sensitivity cardiac troponin and practical consequences in real world: results of big data analysis
    Meune, C.
    Sorbets, E.
    Garnier, N.
    Dubois, N.
    Betraoui, A.
    Bonnivard, V.
    Schwoerer, M.
    Szostek, A.
    Ganninger, M.
    Goudot, F. X.
    [J]. EUROPEAN HEART JOURNAL, 2018, 39 : 1368 - 1368
  • [9] Perspectives on big data
    Weinberg B.D.
    Davis L.
    Berger P.D.
    [J]. Journal of Marketing Analytics, 2013, 1 (4) : 187 - 201
  • [10] Real-World Outcomes of Hemostatic Matrices in Cardiac Surgery
    Tackett, Scott M.
    Calcaterra, Domenico
    Magee, Glenn
    Lattouf, Omar M.
    [J]. JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2014, 28 (06) : 1558 - 1565