End-to-end Autonomous Driving Perception with Sequential Latent Representation Learning

被引:10
|
作者
Chen, Jianyu [1 ]
Xu, Zhuo [1 ]
Tomizuka, Masayoshi [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
OBJECT DETECTION; TRACKING;
D O I
10.1109/IROS45743.2020.9341020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current autonomous driving systems are composed of a perception system and a decision system. Both of them are divided into multiple subsystems built up with lots of human heuristics. An end-to-end approach might clean up the system and avoid huge efforts of human engineering, as well as obtain better performance with increasing data and computation resources. Compared to the decision system, the perception system is more suitable to be designed in an end-to-end framework, since it does not require online driving exploration. In this paper, we propose a novel end-to-end approach for autonomous driving perception. A latent space is introduced to capture all relevant features useful for perception, which is learned through sequential latent representation learning. The learned end-to-end perception model is able to solve the detection, tracking, localization and mapping problems altogether with only minimum human engineering efforts and without storing any maps online. The proposed method is evaluated in a realistic urban driving simulator, with both camera image and lidar point cloud as sensor inputs. The codes and videos of this work are available at our github repo(dagger) and project website(double dagger).
引用
收藏
页码:1999 / 2006
页数:8
相关论文
共 50 条
  • [1] Interpretable End-to-End Urban Autonomous Driving With Latent Deep Reinforcement Learning
    Chen, Jianyu
    Li, Shengbo Eben
    Tomizuka, Masayoshi
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 5068 - 5078
  • [2] End-to-End Federated Learning for Autonomous Driving Vehicles
    Zhang, Hongyi
    Bosch, Jan
    Olsson, Helena Holmstrom
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Incremental End-to-End Learning for Lateral Control in Autonomous Driving
    Kwon, Jaerock
    Khalil, Aws
    Kim, Donghyun
    Nam, Haewoon
    [J]. IEEE ACCESS, 2022, 10 : 33771 - 33786
  • [4] Hierarchical Interpretable Imitation Learning for End-to-End Autonomous Driving
    Teng, Siyu
    Chen, Long
    Ai, Yunfeng
    Zhou, Yuanye
    Xuanyuan, Zhe
    Hu, Xuemin
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 673 - 683
  • [5] End-to-End Deep Conditional Imitation Learning for Autonomous Driving
    Abdou, Mohammed
    Kamal, Hanan
    El-Tantawy, Samah
    Abdelkhalek, Ali
    Adel, Omar
    Hamdy, Karim
    Abaas, Mustafa
    [J]. 31ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS (IEEE ICM 2019), 2019, : 346 - 350
  • [6] Autonomous Driving Control Using End-to-End Deep Learning
    Lee, Myoung-jae
    Ha, Young-guk
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 470 - 473
  • [7] An End-to-End Curriculum Learning Approach for Autonomous Driving Scenarios
    Anzalone, Luca
    Barra, Paola
    Barra, Silvio
    Castiglione, Aniello
    Nappi, Michele
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19817 - 19826
  • [8] Explaining Autonomous Driving by Learning End-to-End Visual Attention
    Cultrera, Luca
    Seidenari, Lorenzo
    Becattini, Federico
    Pala, Pietro
    Del Bimbo, Alberto
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1389 - 1398
  • [9] Multimodal End-to-End Autonomous Driving
    Xiao, Yi
    Codevilla, Felipe
    Gurram, Akhil
    Urfalioglu, Onay
    Lopez, Antonio M.
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) : 537 - 547
  • [10] Adversarial Driving: Attacking End-to-End Autonomous Driving
    Wu, Han
    Yunas, Syed
    Rowlands, Sareh
    Ruan, Wenjie
    Wahlstrom, Johan
    [J]. 2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,