Incremental End-to-End Learning for Lateral Control in Autonomous Driving

被引:6
|
作者
Kwon, Jaerock [1 ]
Khalil, Aws [1 ]
Kim, Donghyun [2 ]
Nam, Haewoon [2 ]
机构
[1] Univ Michigan Dearborn, Dept Elect & Comp Engn, Dearborn, MI 48128 USA
[2] Hanyang Univ, Div Elect Engn, Ansan 15588, South Korea
关键词
Training; Neural networks; Data collection; Vehicles; Automobiles; Cloning; Convolutional neural networks; Behavioral cloning; end-to-end learning; artificial intelligence; autonomous systems; intelligent systems; machine learning; neural networks; vehicle control;
D O I
10.1109/ACCESS.2022.3160655
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of high-quality data is required to complete the job of lateral control utilizing Behavioral Cloning (BC) through an End-to-End (E2E) learning system. The majority of E2E learning systems gather this high-quality data all at once before beginning the training phase (i.e., the training process does not start until the end of the data collection process). The demand for high-quality data necessitates a large amount of human effort and substantial time and money spent waiting for data collection to be completed. As a result, it is critical to find a viable option to reduce both the time and cost of data collecting while also maintaining the performance of a trained vehicle controller. This paper offers a novel behavioral cloning approach for lateral vehicle control to address the aforementioned problems. The proposed technique begins by collecting the least amount of human driving data possible. The data from human drivers are utilized for training a convolutional neural network for lateral control. The trained neural network is subsequently deployed to the vehicle's automated driving controller, replacing a human driver. At this point, a human driver is out of the loop, and an automated driving controller, trained by the initial data from a human driver, drives the vehicle to collect further training data. The driving data obtained are sent into a convolutional neural network training module, then the newly trained neural network is deployed to the automated driving controller that will drive the vehicle further. The data collection alternates neural network training processes using the collected data until the neural network learns to correctly associate an image input with a steering angle. The proposed incremental approach was extensively tested in simulated environments, and the results are promising, only 3.81% (1,061 out of 27,884) of the total data came from a human driver. The incrementally trained neural networks using data collected by automated controllers were able to drive the vehicle in two different tracks successfully. The AI chauffeur was able to drive the vehicle on Track B for more than 70% of the track even though it has not seen the track before.
引用
收藏
页码:33771 / 33786
页数:16
相关论文
共 50 条
  • [1] Autonomous Driving Control Using End-to-End Deep Learning
    Lee, Myoung-jae
    Ha, Young-guk
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 470 - 473
  • [2] End-to-End Federated Learning for Autonomous Driving Vehicles
    Zhang, Hongyi
    Bosch, Jan
    Olsson, Helena Holmstrom
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Multi-State End-to-End Learning for Autonomous Vehicle Lateral Control
    Mentasti, Simone
    Bersani, Mattia
    Matteucci, Matteo
    Cheli, Federico
    [J]. 2020 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE), 2020,
  • [4] End-to-End Learning of Autonomous Vehicle Lateral Control via MPC Training
    Mentasti, Simone
    Bersani, Mattia
    Arrigoni, Stefano
    Matteucci, Matteo
    Cheli, Federico
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS 16, IAS-16, 2022, 412 : 195 - 211
  • [5] End-to-End Deep Learning for Autonomous Vehicles Lateral Control Using CNN
    Oussama, Aatiq
    Mohamed, Talea
    [J]. ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 2, 2022, 1418 : 705 - 712
  • [6] Hierarchical Interpretable Imitation Learning for End-to-End Autonomous Driving
    Teng, Siyu
    Chen, Long
    Ai, Yunfeng
    Zhou, Yuanye
    Xuanyuan, Zhe
    Hu, Xuemin
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 673 - 683
  • [7] End-to-End Deep Conditional Imitation Learning for Autonomous Driving
    Abdou, Mohammed
    Kamal, Hanan
    El-Tantawy, Samah
    Abdelkhalek, Ali
    Adel, Omar
    Hamdy, Karim
    Abaas, Mustafa
    [J]. 31ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS (IEEE ICM 2019), 2019, : 346 - 350
  • [8] An End-to-End Curriculum Learning Approach for Autonomous Driving Scenarios
    Anzalone, Luca
    Barra, Paola
    Barra, Silvio
    Castiglione, Aniello
    Nappi, Michele
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19817 - 19826
  • [9] Explaining Autonomous Driving by Learning End-to-End Visual Attention
    Cultrera, Luca
    Seidenari, Lorenzo
    Becattini, Federico
    Pala, Pietro
    Del Bimbo, Alberto
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1389 - 1398
  • [10] Multimodal End-to-End Autonomous Driving
    Xiao, Yi
    Codevilla, Felipe
    Gurram, Akhil
    Urfalioglu, Onay
    Lopez, Antonio M.
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) : 537 - 547