Effect of Citrate on the Size and the Magnetic Properties of Primary Fe3O4 Nanoparticles and Their Aggregates

被引:23
|
作者
Atrei, Andrea [1 ]
Mahdizadeh, Fariba Fahmideh [1 ]
Baratto, Maria Camilla [1 ]
Scala, Andrea [2 ]
机构
[1] Univ Siena, Dipartimento Biotecnol Chim & Farm, I-53100 Siena, Italy
[2] Univ Siena, Dipartimento Sci Fis Terra & Ambiente, I-53100 Siena, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 15期
关键词
magnetite; nanoparticles; XRD; DLS; magnetic properties; superparamagnetism; IRON-OXIDE NANOPARTICLES; COLLOIDAL STABILITY; FORMATION MECHANISM; PARTICLE-SIZE; STABILIZATION; NANOCLUSTERS; ADSORPTION; IMPACT; GROWTH; WATER;
D O I
10.3390/app11156974
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The size, size distribution and magnetic properties of magnetite nanoparticles (NPs) prepared by co-precipitation without citrate, in the presence of citrate and citrate adsorbed post-synthesis were studied by X-ray Diffraction (XRD), Dynamic Light Scattering (DLS), Electron Paramagnetic Resonance (EPR) and magnetization measurements. The aim of this investigation was to clarify the effect of citrate ions on the size and magnetic properties of magnetite NPs. The size of the primary NPs, as determined by analysing the width of diffraction peaks using various methods, was ca. 10 nm for bare magnetite NPs and with citrate adsorbed post-synthesis, whereas it was around 5 nm for the NPs co-precipitated in the presence of citrate. DLS measurements show that the three types of NPs form aggregates (100-200 nm in diameter) but the dispersions of the citrate-coated NPs are more stable against sedimentation than those of bare NPs. The sizes and size distributions determined by XRD are in good agreement with those of the magnetic domains obtained by fitting of the magnetization vs. magnetic field intensity curves. Magnetization vs. magnetic field intensity curves show that the three kinds of sample are superparamagnetic.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Size Effect of Fe3O4 Nanoparticles on Magnetism and Dispersion Stability of Magnetic Nanofluid
    Chen, Fang
    Ilyas, Nasir
    Liu, Xiaobing
    Li, Zhenggui
    Yan, Shengnan
    Fu, Hao
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [13] Surface Controlled Magnetic Properties of Fe3O4 Nanoparticles
    Mohapatra, Jeotikanta
    Mitra, Arijit
    Bahadur, D.
    Aslam, M.
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 318 - 319
  • [14] Synthesis and magnetic properties of monodisperse Fe3O4 nanoparticles
    Parvin, K
    Ma, J
    Ly, J
    Sun, XC
    Nikles, DE
    Sun, K
    Wang, LM
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) : 7121 - 7123
  • [15] Surface modification of Fe3O4 nanoparticles and their magnetic properties
    Yan, Hao
    Zhang, Jian-cheng
    You, Chen-xia
    Song, Zhen-wei
    Yu, Ben-wei
    Shen, Yue
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2009, 16 (02) : 226 - 229
  • [16] Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles
    Lv, Y.
    Yang, Y.
    Fang, J.
    Zhang, H.
    Peng, E.
    Liu, X.
    Xiao, W.
    Ding, J.
    RSC ADVANCES, 2015, 5 (94) : 76764 - 76771
  • [17] Effect of Fe3O4 nanoparticles on magnetic electrospun nanofibers
    Liu, Hong-Ying
    Xu, Lan
    Tang, Xiao-Peng
    Sun, Zhi Qiang
    JOURNAL OF THE TEXTILE INSTITUTE, 2015, 106 (05) : 503 - 509
  • [18] Effect of Carbon Shell on the Structural and Magnetic Properties of Fe3O4 Superparamagnetic Nanoparticles
    A. Jafari
    K. Boustani
    S. Farjami Shayesteh
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 187 - 194
  • [19] Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles
    Kulkarni, Sachnin A.
    Sawadh, P. S.
    Palei, Prakash K.
    Kokate, Kiran K.
    CERAMICS INTERNATIONAL, 2014, 40 (01) : 1945 - 1949
  • [20] Effect of surfactant coating on magnetic properties of Fe3O4 nanoparticles: ESR study
    Koseoglu, Yuksel
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 300 (01) : E327 - E330