Model predictive control relevant identification and validation

被引:38
|
作者
Huang, B [1 ]
Malhotra, A
Tamayo, EC
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[2] Syncrude Canada Ltd, Ft McMurray, AB T9G 2G6, Canada
关键词
model validation; detection of abrupt change; process identification; optimal prediction; prediction error method; model predictive control;
D O I
10.1016/S0009-2509(03)00077-0
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The role of data prefiltering in model identification and validation is presented in this paper. A model predictive control relevant data prefilter, namely the multistep ahead prediction filter for optimal predictions over every step within a finite horizon, is presented. It is shown that models that minimize the multistep prediction errors can be identified or verified by filtering the data using certain data prefilters and then applying the prediction error method to the filtered data. Based on these identification results, a predictive control relevant model validation scheme using the local approach is proposed. The developed algorithms are verified through simulations as well as industrial applications. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2389 / 2401
页数:13
相关论文
共 50 条
  • [21] Introducing System Identification Strategy into Model Predictive Control
    Jianhong Wang
    A. Ramirez-Mendoza Ricardo
    de J Lozoya Santos Jorge
    Journal of Systems Science and Complexity, 2020, 33 : 1402 - 1421
  • [22] Validation of a predictive model for smart control of electrical energy storage
    Homan, Bart
    Smit, Gerard J. M.
    van Leeuwen, Richard P.
    Zhu, Lei
    de Wit, Jan B.
    2016 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2016,
  • [23] Verification and Validation of Convex Optimization Algorithms for Model Predictive Control
    Cohen, Raphael
    Feron, Eric
    Garoche, Pierre-Loic
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2020, 17 (05): : 257 - 270
  • [24] Experimental validation of model predictive control stability for autonomous driving
    Lima, Pedro F.
    Pereira, Goncalo Collares
    Martensson, Jonas
    Wahlberg, Bo
    CONTROL ENGINEERING PRACTICE, 2018, 81 : 244 - 255
  • [25] A Robust-Control-Relevant Model Validation Approach for Continuously Variable Transmission Control
    Oomen, Tom
    van der Meulen, Stan
    Bosgra, Okko
    Steinbuch, Maarten
    Elfring, Jos
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 3518 - 3523
  • [26] Identification for control approach to data-driven model predictive control
    Zakeri, Yadollah
    Sheikholeslam, Farid
    Haeri, Mohammad
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2024, 18 (03) : 281 - 301
  • [27] An Approach to Model Validation for Model Predictive Control Based on Dvurecenska's Metric
    Dreke, Victor D. Reyes
    Serrano, Manuel A. Perez
    Garcia, Claudio
    CONTROLO 2020, 2021, 695 : 104 - 113
  • [28] Model predictive control and identification: A linear state space model approach
    Di Ruscio, D
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3202 - 3209
  • [29] Model predictive control and identification: A new approach to closed-loop identification and adaptive control
    Schwarm, A
    Eker, SA
    Nikolaou, M
    THIRD INTERNATIONAL CONFERENCE ON FOUNDATIONS OF COMPUTER-AIDED PROCESS OPERATIONS, 1998, 94 (320): : 303 - 307
  • [30] Model Order Selection in Robust-Control-Relevant System Identification
    Tacx, Paul
    de Rozario, Robin
    Oomen, Tom
    IFAC PAPERSONLINE, 2021, 54 (07): : 1 - 6