Graph Convolutional Neural Networks for Predicting Drug-Target Interactions

被引:196
|
作者
Torng, Wen [1 ]
Altman, Russ B. [1 ,2 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
关键词
SCORING FUNCTION; PROTEINS; LIGANDS;
D O I
10.1021/acs.jcim.9b00628
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Accurate determination of target-ligand interactions is crucial in the drug discovery process. In this paper, we propose a graph-convolutional (Graph-CNN) framework for predicting protein-ligand interactions. First, we built an unsupervised graph-autoencoder to learn fixed-size representations of protein pockets from a set of representative druggable protein binding sites. Second, we trained two Graph-CNNs to automatically extract features from pocket graphs and 2D ligand graphs, respectively, driven by binding classification labels. We demonstrate that graph-autoencoders can learn fixed-size representations for protein pockets of varying sizes and the Graph-CNN framework can effectively capture protein-ligand binding interactions without relying on target-ligand complexes. Across several metrics, Graph-CNNs achieved better or comparable performance to 3DCNN ligand-scoring, AutoDock Vina, RF-Score, and NNScore on common virtual screening benchmark data sets. Visualization of key pocket residues and ligand atoms contributing to the classification decisions confirms that our networks are able to detect important interface residues and ligand atoms within the pockets and ligands, respectively.
引用
收藏
页码:4131 / 4149
页数:19
相关论文
共 50 条
  • [31] Predicting target–ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery
    Paola Ruiz Puentes
    Laura Rueda-Gensini
    Natalia Valderrama
    Isabela Hernández
    Cristina González
    Laura Daza
    Carolina Muñoz-Camargo
    Juan C. Cruz
    Pablo Arbeláez
    [J]. Scientific Reports, 12
  • [32] Predicting Drug Drug Interactions by Signed Graph Filtering-Based Convolutional Networks
    Chen, Ming
    Pan, Yi
    Ji, Chunyan
    [J]. BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2021, 2021, 13064 : 375 - 387
  • [33] GeNNius: an ultrafast drug-target interaction inference method based on graph neural networks
    Veleiro, Uxia
    de la Fuente, Jesus
    Serrano, Guillermo
    Pizurica, Marija
    Casals, Mikel
    Pineda-Lucena, Antonio
    Vicent, Silve
    Ochoa, Idoia
    Gevaert, Olivier
    Hernaez, Mikel
    [J]. BIOINFORMATICS, 2024, 40 (01)
  • [34] A survey of drug-target interaction and affinity prediction methods via graph neural networks
    Zhang, Yue
    Hu, Yuqing
    Han, Na
    Yang, Aqing
    Liu, Xiaoyong
    Cai, Hongmin
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [35] Drug-target interaction predication via multi-channel graph neural networks
    Li, Yang
    Qiao, Guanyu
    Wang, Keqi
    Wang, Guohua
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [36] Effective prediction of drug-target interaction on HIV using deep graph neural networks
    Das, Bihter
    Kutsal, Mucahit
    Das, Resul
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 230
  • [37] Drug-Target Networks
    Vogt, Ingo
    Mestres, Jordi
    [J]. MOLECULAR INFORMATICS, 2010, 29 (1-2) : 10 - 14
  • [38] Predicting target-ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery
    Puentes, Paola Ruiz
    Rueda-Gensini, Laura
    Valderrama, Natalia
    Hernandez, Isabela
    Gonzalez, Cristina
    Daza, Laura
    Munoz-Camargo, Carolina
    Cruz, Juan C.
    Arbelaez, Pablo
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [39] IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction
    Li, Jin
    Wang, Jingru
    Lv, Hao
    Zhang, Zhuoxuan
    Wang, Zaixia
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 655 - 665
  • [40] Predicting Drug-Target Interactions Using Probabilistic Matrix Factorization
    Cobanoglu, Murat Can
    Liu, Chang
    Hu, Feizhuo
    Oltvai, Zoltan N.
    Bahar, Ivet
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (12) : 3399 - 3409