Ordering graphs by their largest (least) Aα-eigenvalues

被引:1
|
作者
Guo, Shu-Guang [1 ]
Zhang, Rong [1 ]
机构
[1] Yancheng Teachers Univ, Sch Math & Stat, Yancheng 224002, Jiangsu, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 21期
基金
中国国家自然科学基金;
关键词
A(alpha)-spectral radius; upper bound; spectral ordering; least A(alpha)-eigenvalue; LAPLACIAN SPECTRAL RADII; MAXIMUM DEGREES; TREES; A(ALPHA)-SPECTRA; INDEX;
D O I
10.1080/03081087.2021.1981811
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple undirected graph. For real number alpha is an element of [0,1], Nikiforov defined the A(alpha) -matrix of G as A(alpha)(G) = alpha D(G) + (1 - alpha)A(G), where A(G) and D(G) are the adjacency matrix and the degree diagonal matrix of G respectively. In this paper, we obtain a sharp upper bound on the largest eigenvalue rho(alpha)(G) of A(alpha)(G) for alpha is an element of [1 /2, 1). Employing this upper bound, we prove that 'For connected G(1) and G(2) with n vertices and m edges, if the maximum degree Delta(G(1)) >= 2 alpha(1 - alpha)(2m - n + 1 ) 2 alpha and Delta(G1) > Delta(G(2)), then rho(alpha) (G(1)) > rho(alpha)(G(2))'. Let lambda(alpha)(G) denote the least eigenvalue of A(alpha)(G). For alpha is an element of (1 /2, 1), we prove that 'For two connected G(1) and G(2), if the minimum degree delta(G(1)) <= 1/1-alpha - 2 and delta(G(1)) < delta(G(2)), then lambda(alpha)(G(1)) < X lambda(alpha)(G(2))'.
引用
收藏
页码:7049 / 7056
页数:8
相关论文
共 50 条
  • [11] Some bounds on the largest eigenvalues of graphs
    Li, Shuchao
    Tian, Yi
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 326 - 332
  • [12] On the largest and least eigenvalues of eccentricity matrix of trees
    He, Xiaocong
    Lu, Lu
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [13] GRAPHS WITH EIGENVALUES AT LEAST-2
    KUMAR, V
    RAO, SB
    SINGHI, NM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 46 (AUG) : 27 - 42
  • [14] On the two largest Q-eigenvalues of graphs
    Wang, JianFeng
    Belardo, Francesco
    Huang, QiongXiang
    Borovicanin, Bojana
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2858 - 2866
  • [15] On the bounds for the largest Laplacian eigenvalues of weighted graphs
    Sorgun, Sezer
    Buyukkose, Serife
    DISCRETE OPTIMIZATION, 2012, 9 (02) : 122 - 129
  • [16] The least eigenvalues of integral circulant graphs
    Basic, Milan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2025, 61 (01)
  • [17] On the sum of k largest distance eigenvalues of graphs
    Lin, Huiqiu
    DISCRETE APPLIED MATHEMATICS, 2019, 259 : 153 - 159
  • [18] Maximizing the largest eigenvalues of signed unicyclic graphs
    Souri, M.
    Heydari, F.
    Maghasedi, M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (02)
  • [19] The sum of the k largest distance eigenvalues of graphs
    Zhang, Yuke
    Lin, Huiqiu
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [20] Bounding the sum of the largest Laplacian eigenvalues of graphs
    Rocha, I.
    Trevisan, V.
    DISCRETE APPLIED MATHEMATICS, 2014, 170 : 95 - 103