Stochastic classical solutions for space-time fractional evolution equations on a bounded domain

被引:7
|
作者
Toniazzi, Lorenzo [1 ]
机构
[1] Univ Warwick, Dept Math, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Inhomogeneous Caputo evolution equation; Restricted fractional Laplacian; Mittag-Leffler functions; Stable Levy processes; Nonlocal boundary condition; DIFFUSION-EQUATIONS; RANDOM-WALKS; CAUCHY-PROBLEMS; SUBORDINATORS; CALCULUS;
D O I
10.1016/j.jmaa.2018.09.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Space-time fractional evolution equations are a powerful tool to model diffusion displaying space-time heterogeneity. We prove existence, uniqueness and stochastic representation of classical solutions for an extension of Caputo evolution equations featuring time-nonlocal initial conditions. We discuss the interpretation of the new stochastic representation. As part of the proof a new result about inhomogeneous Caputo evolution equations is proven. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:594 / 622
页数:29
相关论文
共 50 条
  • [31] GALERKIN FINITE ELEMENT APPROXIMATIONS FOR STOCHASTIC SPACE-TIME FRACTIONAL WAVE EQUATIONS
    Li, Yajing
    Wang, Yejuan
    Deng, Weihua
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 3173 - 3202
  • [32] Stochastic partial differential equations with gradient driven by space-time fractional noises
    Yiming Jiang
    Xu Yang
    [J]. Frontiers of Mathematics in China, 2021, 16 : 479 - 497
  • [33] Space-time fractional stochastic partial differential equations with Lévy noise
    Xiangqian Meng
    Erkan Nane
    [J]. Fractional Calculus and Applied Analysis, 2020, 23 : 224 - 249
  • [34] Stochastic partial differential equations with gradient driven by space-time fractional noises
    Jiang, Yiming
    Yang, Xu
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (02) : 479 - 497
  • [35] New exact wave solutions to the space-time fractional-coupled Burgers equations and the space-time fractional foam drainage equation
    Islam, M. Nurul
    Akbar, M. Ali
    [J]. COGENT PHYSICS, 2018, 5
  • [36] Blow-Up Solutions for the Space-Time Fractional Evolution Equation
    Zhihao Hu
    Qihong Shi
    [J]. Journal of Nonlinear Mathematical Physics, 2023, 30 : 917 - 931
  • [37] Blow-Up Solutions for the Space-Time Fractional Evolution Equation
    Hu, Zhihao
    Shi, Qihong
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (03) : 917 - 931
  • [38] Classical and generalized solutions of fractional stochastic differential equations
    S. V. Lototsky
    B. L. Rozovsky
    [J]. Stochastics and Partial Differential Equations: Analysis and Computations, 2020, 8 : 761 - 786
  • [39] Classical and generalized solutions of fractional stochastic differential equations
    Lototsky, S., V
    Rozovsky, B. L.
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2020, 8 (04): : 761 - 786
  • [40] ON OBLIQUE WAVE SOLUTIONS OF SOME SPACE-TIME FRACTIONAL MODIFIED KDV EQUATIONS
    Zafar, Asim
    Bekir, Ahmet
    Khalid, Bushra
    Amjad, Muhammad
    [J]. JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 909 - 918