TwoStepCisMR: A Novel Method and R Package for Attenuating Bias in cis-Mendelian Randomization Analyses

被引:11
|
作者
Woolf, Benjamin [1 ,2 ,3 ]
Zagkos, Loukas [4 ]
Gill, Dipender [4 ,5 ]
机构
[1] Univ Bristol, Sch Psychol Sci, Bristol BS8 1TH, Avon, England
[2] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol BS8 1TH, Avon, England
[3] London Sch Hyg & Trop Med, Fac Epidemiol & Populat Hlth, London WC1E 7HT, England
[4] Imperial Coll London, Sch Publ Hlth, Dept Epidemiol & Biostat, London SW7 2AZ, England
[5] Novo Nordisk, Res & Early Dev, Chief Sci Advisor Off, DK-1050 Copenhagen, Denmark
基金
英国经济与社会研究理事会;
关键词
Mendelian randomisation; drug-target validation; sensitivity analyses; GENETIC-VARIANTS;
D O I
10.3390/genes13091541
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Mendelian randomisation (MR) is an increasingly popular method for strengthening causal inference in epidemiological studies. cis-MR in particular uses genetic variants in the gene region of a drug target protein as an instrumental variable to provide quasi-experimental evidence for on-target drug effects. A limitation of this framework is when the genetic variant is correlated to another variant that also effects the outcome of interest (confounding through linkage disequilibrium). Methods for correcting this bias, such as multivariable MR, struggle in a cis setting because of the high correlation among genetic variants. Here, through simulation experiments and an applied example considering the effect of interleukin 6 receptor signaling on coronary artery disease risk, we present an alternative method for attenuating bias that does not suffer from this problem. As our method uses both MR and the product and difference method for mediation analysis, our proposal inherits all assumptions of these methods. We have additionally developed an R package, TwoStepCisMR, to facilitate the implementation of the method.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] A robust cis-Mendelian randomization method with application to drug target discovery
    Lin, Zhaotong
    Pan, Wei
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] Conditional inference in cis-Mendelian randomization using weak genetic factors
    Patel, Ashish
    Gill, Dipender
    Newcombe, Paul
    Burgess, Stephen
    [J]. BIOMETRICS, 2023, 79 (04) : 3458 - 3471
  • [3] Conditional inference in cis-Mendelian randomization using weak genetic factors
    Patel, Ashish
    Gill, Dipender
    Newcombe, Paul
    Burgess, Stephen
    [J]. HUMAN HEREDITY, 2022, VOL. (SUPPL 1) : 20 - 20
  • [4] ExPheWas: a platform for cis-Mendelian randomization and gene-based association scans
    Legault, Marc-Andre
    Perreault, Louis-Philippe Lemieux
    Tardif, Jean-Claude
    Dube, Marie-Pierre
    [J]. NUCLEIC ACIDS RESEARCH, 2022, : W305 - W311
  • [5] MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data
    Yavorska, Olena O.
    Burgess, Stephen
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2017, 46 (06) : 1734 - 1739
  • [6] A cis-Mendelian randomization approach to evaluate genetic support for lipid-modifying drug targets
    Gordillo-Maranon, Maria
    Zwierzyna, Magdalena
    Hingorani, Aroon D.
    Schmidt, Amand F.
    Finan, Chris
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 484 - 485
  • [7] Statistical methods for cis-Mendelian randomization with two-sample summary-level data
    Gkatzionis, Apostolos
    Burgess, Stephen
    Newcombe, Paul J.
    [J]. GENETIC EPIDEMIOLOGY, 2023, 47 (01) : 3 - 25
  • [8] Introducing Linear Slichter Regression as a Method of Detecting and Correcting for Pleiotropic Bias in Mendelian Randomization Analyses
    Spiller, Wes
    Bowden, Jack
    Smith, George Davey
    [J]. HUMAN HEREDITY, 2016, 81 (04) : 231 - 231
  • [9] Complement C3 as a potential drug target in periodontitis: Evidence from the cis-Mendelian randomization approach
    Alayash, Zoheir
    Baumeister, Sebastian-Edgar
    Holtfreter, Birte
    Kocher, Thomas
    Baurecht, Hansjoerg
    Ehmke, Benjamin
    Nolde, Michael
    Reckelkamm, Stefan Lars
    [J]. JOURNAL OF CLINICAL PERIODONTOLOGY, 2024, 51 (02) : 127 - 134
  • [10] Avoiding collider bias in Mendelian randomization when performing stratified analyses
    Coscia, Claudia
    Gill, Dipender
    Benitez, Raquel
    Perez, Teresa
    Malats, Nuria
    Burgess, Stephen
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2022, 37 (07) : 671 - 682