Avoiding collider bias in Mendelian randomization when performing stratified analyses

被引:24
|
作者
Coscia, Claudia [1 ,2 ,3 ]
Gill, Dipender [4 ,5 ,6 ,7 ]
Benitez, Raquel [1 ,2 ]
Perez, Teresa [3 ]
Malats, Nuria [1 ,2 ]
Burgess, Stephen [8 ]
机构
[1] Spanish Natl Canc Res Ctr CNIO, Genet & Mol Epidemiol Grp, Madrid, Spain
[2] CIBERONC, Madrid, Spain
[3] Univ Complutense Madrid, Dept Stat & Data Sci, Madrid, Spain
[4] Imperial Coll London, Dept Epidemiol & Biostat, London, England
[5] Novo Nordisk Res Ctr Oxford, Old Rd Campus, Oxford, England
[6] St Georges Univ Hosp NHS Fdn Trust, Clin Pharmacol Grp, Pharm & Med Directorate, London, England
[7] St Georges Univ London, Inst Infect & Immun, Clin Pharmacol & Therapeut Sect, London, England
[8] Univ Cambridge, MRC Biostat Unit, Cambridge, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
Mendelian randomization; Collider bias; Stratification; Bladder cancer; Smoking; Bodyweight; INSTRUMENTAL VARIABLE ANALYSIS;
D O I
10.1007/s10654-022-00879-0
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Mendelian randomization (MR) uses genetic variants as instrumental variables to investigate the causal effect of a risk factor on an outcome. A collider is a variable influenced by two or more other variables. Naive calculation of MR estimates in strata of the population defined by a collider, such as a variable affected by the risk factor, can result in collider bias. We propose an approach that allows MR estimation in strata of the population while avoiding collider bias. This approach constructs a new variable, the residual collider, as the residual from regression of the collider on the genetic instrument, and then calculates causal estimates in strata defined by quantiles of the residual collider. Estimates stratified on the residual collider will typically have an equivalent interpretation to estimates stratified on the collider, but they are not subject to collider bias. We apply the approach in several simulation scenarios considering different characteristics of the collider variable and strengths of the instrument. We then apply the proposed approach to investigate the causal effect of smoking on bladder cancer in strata of the population defined by bodyweight. The new approach generated unbiased estimates in all the simulation settings. In the applied example, we observed a trend in the stratum-specific MR estimates at different bodyweight levels that suggested stronger effects of smoking on bladder cancer among individuals with lower bodyweight. The proposed approach can be used to perform MR studying heterogeneity among subgroups of the population while avoiding collider bias.
引用
收藏
页码:671 / 682
页数:12
相关论文
共 50 条
  • [1] Avoiding collider bias in Mendelian randomization when performing stratified analyses
    Claudia Coscia
    Dipender Gill
    Raquel Benítez
    Teresa Pérez
    Núria Malats
    Stephen Burgess
    [J]. European Journal of Epidemiology, 2022, 37 : 671 - 682
  • [2] Avoiding bias from weak instruments in Mendelian randomization studies
    Burgess, Stephen
    Thompson, Simon G.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (03) : 755 - 764
  • [3] Selection bias when inferring the effect direction in Mendelian randomization
    Lutz, Sharon M.
    Voorhies, Kirsten
    Wu, Ann C.
    Hokanson, John
    Vansteelandt, Stijn
    Lange, Christoph
    [J]. GENETIC EPIDEMIOLOGY, 2022, 46 (5-6) : 341 - 343
  • [4] Collider bias correction for multiple covariates in GWAS using robust multivariable Mendelian randomization
    Wang, Peiyao
    Lin, Zhaotong
    Xue, Haoran
    Pan, Wei
    [J]. PLOS GENETICS, 2024, 20 (04):
  • [5] MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data
    Yavorska, Olena O.
    Burgess, Stephen
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2017, 46 (06) : 1734 - 1739
  • [6] Common Methods for Performing Mendelian Randomization
    Teumer, Alexander
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2018, 5
  • [7] Survivor bias in Mendelian randomization analysis
    Vansteelandt, Stijn
    Dukes, Oliver
    Martinussen, Torben
    [J]. BIOSTATISTICS, 2018, 19 (04) : 426 - 443
  • [8] Detecting and correcting for bias in Mendelian randomization analyses using gene-by-environment interactions
    Spiller, Wes
    Slichter, David
    Bowden, Jack
    Smith, George Davey
    [J]. GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 732 - 733
  • [9] Detecting and correcting for bias in Mendelian randomization analyses using Gene-by-Environment interactions
    Spiller, Wes
    Slichter, David
    Bowden, Jack
    Smith, George Davey
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (03) : 702 - 712
  • [10] Performing Mendelian randomization using structural equation models
    Evans, David
    Warrington, Nicole
    [J]. BEHAVIOR GENETICS, 2017, 47 (06) : 651 - 651