Representations of quiver Hecke algebras via Lyndon bases

被引:17
|
作者
Hill, David [1 ]
Melvin, George [2 ]
Mondragon, Damien [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
QUANTUM GROUPS;
D O I
10.1016/j.jpaa.2011.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new class of algebras has been introduced by Khovanov and Lauda and independently by Rouquier. These algebras categorify one-half of the Quantum group associated to arbitrary Cartan data. In this paper, we use the combinatorics of Lyndon words to construct the irreducible representations of those algebras associated to Cartan data of finite type. This completes the classification of simple modules for the quiver Hecke algebra initiated by Kleshchev and Ram. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1052 / 1079
页数:28
相关论文
共 50 条