Loss Factor Characterization Methodology for Piezoelectric Ceramics

被引:2
|
作者
Zhuang, Yuan [1 ]
Ural, Seyit O. [1 ]
Uchino, Kenji [1 ]
机构
[1] Penn State Univ, Int Ctr Actuators & Transducers, University Pk, PA 16802 USA
关键词
ANTIRESONANCE FREQUENCY; LOSS MECHANISMS; TRANSDUCERS;
D O I
10.1088/1757-899X/18/9/092027
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The key factor for the miniaturization of piezoelectric devices is power density, which is limited by the heat generation or loss mechanisms. There are three loss components for piezoelectric vibrators, i.e., dielectric, elastic and piezoelectric losses. The mechanical quality factor, determined by these three factors, is the figure of merit in the sense of loss or heat generation. In this paper, quality factors of resonance and antiresonance for k(31), k(33), and k(15) vibration modes are derived, and the methodology to determine loss factors in various directions is provided. For simplicity, we focus on materials with mm (equivalent to 6mm) crystal symmetry for deriving the loss factors of polycrystalline ceramics, and 16 different loss factors among total 20 can be obtained from the admittance/ impedance measurements.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Representation of loss component with complex nonlinear piezoelectric coefficients in piezoelectric ceramics
    Ishii, Keisuke
    Tashiro, Shinjiro
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2011, 119 (1385) : 29 - 34
  • [12] Determination of anisotropic intensive piezoelectric loss in polycrystalline ceramics
    Choi, Minkyu
    Park, Yoonsang
    Daneshpajooh, Hossein
    Scholehwar, Timo
    Hennig, Eberhard
    Uchino, Kenji
    CERAMICS INTERNATIONAL, 2021, 47 (11) : 16309 - 16315
  • [13] NONCONTACT ULTRASONIC CHARACTERIZATION OF PIEZOELECTRIC CERAMICS.
    Jen, Cheng-Kuei
    Cielo, Paolo
    Maldague, Xavier
    El-Assal, Kamal
    Journal of the American Ceramic Society, 1985, 68 (06): : 146 - 148
  • [14] Characterization of the mechanical nonlinear behavior of piezoelectric ceramics
    Albareda, A
    Gonnard, P
    Perrin, V
    Briot, R
    Guyomar, D
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2000, 47 (04) : 844 - 853
  • [15] Test methodology for the thermal shock characterization of ceramics
    Vedula, VR
    Green, DJ
    Hellmann, JR
    Segall, AE
    JOURNAL OF MATERIALS SCIENCE, 1998, 33 (22) : 5427 - 5432
  • [16] Test methodology for the thermal shock characterization of ceramics
    V. R. Vedula
    D. J. Green
    J. R. Hellmann
    A. E. Segall
    Journal of Materials Science, 1998, 33 : 5427 - 5432
  • [17] Characterization of multilayered piezoelectric ceramics for high power transducers
    Dubus, B
    Haw, G
    Granger, C
    Ledez, O
    ULTRASONICS, 2002, 40 (1-8) : 903 - 906
  • [18] Mechanical Characterization of PZT Ceramics for Multilayer Piezoelectric Actuators
    Bermejo, R.
    Deluca, M.
    JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY, 2012, 3 (04): : 159 - 168
  • [19] Characterization of porous piezoelectric ceramics: The length expander case
    AlvarezArenas, TEG
    deEspinosa, FM
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (06): : 3507 - 3515
  • [20] Fabrication and Characterization of Niobate Piezoelectric Ceramics with Sintering Aids
    Wang, Ruiping
    Shibusawa, Souichi
    Miura, Noboru
    Bando, Hiroshi
    Itoh, Mitsuru
    FERROELECTRICS, 2009, 385 : 141 - 148