The genomic organization of retrotransposons in Brassica oleracea

被引:42
|
作者
Alix, K
Ryder, CD
Moore, J
King, GJ
Heslop-Harrison, JS [1 ]
机构
[1] Univ Leicester, Dept Biol, Leicester LE1 7RH, Leics, England
[2] CNRS, UMR Genet Vegetale, INRA, UPS,INA PG, F-91190 Gif Sur Yvette, France
[3] Warwick HRI, Wellesbourne CV35 9EF, Warwick, England
[4] Rothamsted Res, Harpenden AL5 2QJ, Herts, England
基金
英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
BAC library; copia; fluorescent in situ hybridization (FISH); gypsy; LINE; reverse transcriptase;
D O I
10.1007/s11103-005-1510-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have investigated the copy numbers and genomic organization of five representative reverse transcriptase domains from retrotransposons in Brassica oleracea. Two non-homologous Pseudoviridae (Ty1/copia-like) elements, two Metaviridae (Ty3/gypsy-like) elements (one related to the Athila family) and one Retroposinae (LINE) element were hybridized to a gridded BAC library, "BoB". The results indicated that the individual LTR retrotransposons (copia and gypsy-like) were represented by between 90 and 320 copies in the haploid genome, with only evidence of a single location for the LINE. Sequence analysis of the same elements against genome survey sequence gave estimates of between 60 and 570, but no LINE was found. There was minimal evidence for clustering between any of these retroelements: only half the randomly expected number of BACs hybridized to both LTR-retrotransposon families. Fluorescent in situ hybridization showed that each of the retroelements had a characteristic genomic distribution. Our results suggest there are preferential sites and perhaps control mechanisms for the insertion or excision of different retrotransposon groups.
引用
收藏
页码:839 / 851
页数:13
相关论文
共 50 条
  • [31] Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea
    Prem L Bhalla
    Mohan B Singh
    Nature Protocols, 2008, 3 : 181 - 189
  • [32] POLLINATION AND CONTAMINATION OF BRASSICA OLERACEA L
    NIEUWHOF, M
    EUPHYTICA, 1963, 12 (01) : 17 - &
  • [33] Study of the life history of Brassica oleracea
    Pearson, OH
    BOTANICAL GAZETTE, 1932, 94 : 534 - 550
  • [34] Characterization, Genomic Organization, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in Erianthus arundinaceus
    Huang, Yongji
    Luo, Ling
    Hu, Xuguang
    Yu, Fan
    Yang, Yongqing
    Deng, Zuhu
    Wu, Jiayun
    Chen, Rukai
    Zhang, Muqing
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [35] Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea
    Bhalla, Prem L.
    Singh, Mohan B.
    NATURE PROTOCOLS, 2008, 3 (02) : 181 - 189
  • [36] Rb gene introgression from Brassica carinata to Brassica oleracea
    Zubko, O.
    Monakhos, S.
    Monakhos, G.
    VII INTERNATIONAL SYMPOSIUM ON BRASSICAS, 2018, 1202 : 107 - 112
  • [37] A Guide to the Variability of Flavonoids in Brassica oleracea
    Mageney, Vera
    Neugart, Susanne
    Albach, Dirk C.
    MOLECULES, 2017, 22 (02):
  • [38] BIOSYNTHESIS OF PARAFFINS BY BRASSICA OLERACEA (BROCCOLI)
    KOLATTUK.PE
    FEDERATION PROCEEDINGS, 1966, 25 (2P1) : 522 - &
  • [39] Distribution of Glucosinolates in Brassica oleracea cultivars
    Castro, A
    Aires, A
    Rosa, E
    Bloem, E
    Stulen, I
    De Kok, LJ
    PHYTON-ANNALES REI BOTANICAE, 2004, 44 (01) : 133 - 143
  • [40] LIPIDS OF BRASSICA-OLERACEA LEAVES
    REUT, OV
    KOLESNIK, AA
    GOLUBEV, VN
    KHIMIYA PRIRODNYKH SOEDINENII, 1989, (02): : 180 - 185