SOME L∞ SOLUTIONS OF THE HYPERBOLIC NONLINEAR SCHRODINGER EQUATION AND THEIR STABILITY

被引:0
|
作者
Correia, Simao [1 ]
Figueira, Mario [1 ]
机构
[1] Univ Lisbon, Fac Ciencias, CMAF CIO, P-1749016 Lisbon, Portugal
关键词
WAVES; NLS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the hyperbolic nonlinear Schrodinger equation (HNLS) over R-d iu(t) + u(xx) - Delta(y)u + lambda vertical bar u vertical bar(sigma) u = 0. We deduce the conservation laws associated with (HNLS) and observe the lack of information given by the conserved quantities. We build several classes of particular solutions, including hyperbolically symmetric solutions, spatial plane waves and spatial standing waves, which never lie in H-1. Motivated by this, we build suitable functional spaces that include both H-1 solutions and these particular classes, and prove local well-posedness on these spaces. Moreover, we prove a stability result for both spatial plane waves and spatial standing waves with respect to small H-1 perturbations.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
  • [31] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    [J]. TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [32] ANTISYMMETRIC SOLUTIONS FOR THE NONLINEAR SCHRODINGER EQUATION
    Carvalho, Janete S.
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (1-2) : 109 - 134
  • [33] Autoresonant solutions of the nonlinear Schrodinger equation
    Friedland, L
    [J]. PHYSICAL REVIEW E, 1998, 58 (03): : 3865 - 3875
  • [34] On effective solutions of the nonlinear Schrodinger equation
    Khatiashvili, N.
    Shanidze, R.
    Janjgava, D.
    [J]. PHYSICS AND MATHEMATICS OF NONLINEAR PHENOMENA 2013 (PMNP2013), 2014, 482
  • [35] Threshold solutions for the nonlinear Schrodinger equation
    Campos, Luccas
    Farah, Luiz Gustavo
    Roudenko, Svetlana
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1637 - 1708
  • [36] A UNIVERSAL ASYMPTOTIC REGIME IN THE HYPERBOLIC NONLINEAR SCHRODINGER EQUATION
    Ablowitz, Mark J.
    Ma, Yi-Ping
    Rumanov, Igor
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (04) : 1248 - 1268
  • [37] Semiclassical solutions of the nonlinear Schrodinger equation
    Shapovalov, AV
    Trifonov, AY
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1999, 6 (02) : 127 - 138
  • [38] On Solutions to the Matrix Nonlinear Schrodinger Equation
    Domrin, A. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (06) : 920 - 932
  • [39] ON THE STABILITY OF THE NONLINEAR SCHRODINGER-EQUATION
    HERBST, BM
    MITCHELL, AR
    WEIDEMAN, JAC
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) : 263 - 281
  • [40] Stability of periodic nonlinear Schrodinger equation
    Borgna, J. P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) : 4252 - 4265