A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles

被引:102
|
作者
Hua, Yang [1 ]
Zhou, Sida [1 ]
Cui, Haigang [1 ]
Liu, Xinhua [1 ]
Zhang, Cheng [2 ]
Xu, Xingwu [3 ]
Ling, Heping [4 ]
Yang, Shichun [1 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing, Peoples R China
[2] Coventry Univ, Inst Future Transport & Cities, CALPS, Coventry, W Midlands, England
[3] Hefei Guoxuan High Tech Power Energy Co Ltd, High Tech Engn Res Inst, Hefei, Peoples R China
[4] BYD Auto Ind Co Ltd, Automot Engn & Res Inst, Shenzhen, Peoples R China
关键词
cell imbalance; electric vehicles; equalization control; Li-ion battery; STATE-OF-CHARGE; MODEL-PREDICTIVE CONTROL; SWITCHED-CAPACITOR EQUALIZER; THERMAL MANAGEMENT-SYSTEM; EXTENDED KALMAN FILTER; SOC ESTIMATION; BALANCING STRATEGY; ONLINE ESTIMATION; HEALTH ESTIMATION; LIFEPO4; BATTERY;
D O I
10.1002/er.5683
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The rapid growth of transportation demand has been enlarged strongly which has promoted electric vehicles powered by lithium-ion batteries. However, the inconsistencies within the battery pack will deteriorate over the lifecycle and affect the performance of electric vehicles. Therefore, various thermal management systems and equalization systems have been applied in battery management system to deal with the inconsistencies, extend battery service life, and improve safety performance. This review summarizes the origination of inconsistency within lithium-ion batteries from production to usage process, and then introduces the classification methods and application scenarios of the balance management system in detail. Based on the circuit topology, equalization systems can be classified into passive and active topologies. Active topologies are widely researched due to the advantages of high equalization efficiency and high speed, and the state-of-art innovations are presented and compared from the prospective of circuit, energy flow, efficiency and system complexity. In addition, this review focuses on the mainstream equalization strategies based on the analysis of balancing variables and control algorithms in terms of efficiency, complexity and stability, especially in the areas of variables optimal selection and advanced control algorithms. It is expected that innovations such as cloud control methods and hybrid balancing systems equipped with thermal management will become the future direction of lithium-ion equalization technologies.
引用
收藏
页码:11059 / 11087
页数:29
相关论文
共 50 条
  • [21] The Mathematical Model of 18650 Lithium-ion Battery in Electric Vehicles
    Amiribavandpour, Parisa
    Shen, Weixiang
    Kapoor, Ajay
    Shearer, Janine
    PROCEEDINGS OF THE 2013 IEEE 8TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2013, : 1264 - 1269
  • [22] Online model identification of lithium-ion battery for electric vehicles
    Hu Xiao-song
    Sun Feng-chun
    Zou Yuan
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2011, 18 (05): : 1525 - 1531
  • [23] Online model identification of lithium-ion battery for electric vehicles
    Xiao-song Hu
    Feng-chun Sun
    Yuan Zou
    Journal of Central South University, 2011, 18 : 1525 - 1531
  • [24] Capacity fade modeling of a Lithium-ion battery for electric vehicles
    Baek, K. W.
    Hong, E. S.
    Cha, S. W.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2015, 16 (02) : 309 - 315
  • [25] Capacity fade modeling of a Lithium-ion battery for electric vehicles
    K. W. Baek
    E. S. Hong
    S. W. Cha
    International Journal of Automotive Technology, 2015, 16 : 309 - 315
  • [26] Prediction of Ageing Effects on Lithium-Ion Battery for Electric Vehicles
    Micari, S.
    Foti, S.
    Testa, A.
    De Caro, S.
    Sergi, F.
    Andaloro, L.
    Aloisio, D.
    Napoli, G.
    13TH INTERNATIONAL CONFERENCE ON ELEKTRO (ELEKTRO 2020), 2020,
  • [27] Online model identification of lithium-ion battery for electric vehicles
    胡晓松
    孙逢春
    邹渊
    Journal of Central South University of Technology, 2011, 18 (05) : 1525 - 1531
  • [28] Methods for estimating lithium-ion battery state of charge for use in electric vehicles: A review
    Gaga A.
    Tannouche A.
    Mehdaoui Y.
    El Hadadi B.
    Energy Harvesting and Systems, 2022, 9 (02): : 211 - 225
  • [29] State of charge and state of health estimation of a lithium-ion battery for electric vehicles: A review
    Belmajdoub, N.
    Lajouad, R.
    El Magri, A.
    Boudoudouh, S.
    IFAC PAPERSONLINE, 2024, 58 (13): : 460 - 465
  • [30] A comprehensive review of polymer electrolyte for lithium-ion battery
    Sashmitha, K.
    Rani, M. Usha
    POLYMER BULLETIN, 2023, 80 (01) : 89 - 135