A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles

被引:102
|
作者
Hua, Yang [1 ]
Zhou, Sida [1 ]
Cui, Haigang [1 ]
Liu, Xinhua [1 ]
Zhang, Cheng [2 ]
Xu, Xingwu [3 ]
Ling, Heping [4 ]
Yang, Shichun [1 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing, Peoples R China
[2] Coventry Univ, Inst Future Transport & Cities, CALPS, Coventry, W Midlands, England
[3] Hefei Guoxuan High Tech Power Energy Co Ltd, High Tech Engn Res Inst, Hefei, Peoples R China
[4] BYD Auto Ind Co Ltd, Automot Engn & Res Inst, Shenzhen, Peoples R China
关键词
cell imbalance; electric vehicles; equalization control; Li-ion battery; STATE-OF-CHARGE; MODEL-PREDICTIVE CONTROL; SWITCHED-CAPACITOR EQUALIZER; THERMAL MANAGEMENT-SYSTEM; EXTENDED KALMAN FILTER; SOC ESTIMATION; BALANCING STRATEGY; ONLINE ESTIMATION; HEALTH ESTIMATION; LIFEPO4; BATTERY;
D O I
10.1002/er.5683
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The rapid growth of transportation demand has been enlarged strongly which has promoted electric vehicles powered by lithium-ion batteries. However, the inconsistencies within the battery pack will deteriorate over the lifecycle and affect the performance of electric vehicles. Therefore, various thermal management systems and equalization systems have been applied in battery management system to deal with the inconsistencies, extend battery service life, and improve safety performance. This review summarizes the origination of inconsistency within lithium-ion batteries from production to usage process, and then introduces the classification methods and application scenarios of the balance management system in detail. Based on the circuit topology, equalization systems can be classified into passive and active topologies. Active topologies are widely researched due to the advantages of high equalization efficiency and high speed, and the state-of-art innovations are presented and compared from the prospective of circuit, energy flow, efficiency and system complexity. In addition, this review focuses on the mainstream equalization strategies based on the analysis of balancing variables and control algorithms in terms of efficiency, complexity and stability, especially in the areas of variables optimal selection and advanced control algorithms. It is expected that innovations such as cloud control methods and hybrid balancing systems equipped with thermal management will become the future direction of lithium-ion equalization technologies.
引用
收藏
页码:11059 / 11087
页数:29
相关论文
共 50 条
  • [1] Lithium-Ion Battery Technologies for Electric Vehicles
    Pesaran, Ahmad A.
    IEEE ELECTRIFICATION MAGAZINE, 2023, 11 (02): : 35 - 43
  • [2] A review on the key issues for lithium-ion battery management in electric vehicles
    Lu, Languang
    Han, Xuebing
    Li, Jianqiu
    Hua, Jianfeng
    Ouyang, Minggao
    JOURNAL OF POWER SOURCES, 2013, 226 : 272 - 288
  • [3] A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles
    Zou, Bosong
    Zhang, Lisheng
    Xue, Xiaoqing
    Tan, Rui
    Jiang, Pengchang
    Ma, Bin
    Song, Zehua
    Hua, Wei
    ENERGIES, 2023, 16 (14)
  • [4] Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review
    Khan, F. M. Nizam Uddin
    Rasul, Mohammad G.
    Sayem, A. S. M.
    Mandal, Nirmal K.
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [5] Research Progress on Pulse Heating Technology of Lithium-ion Battery for Electric Vehicles
    Lian Y.
    Ling H.
    Ma Q.
    Ren Q.
    He B.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (02): : 169 - 174
  • [6] A Review of Equalization Topologies for Lithium-ion Battery Packs
    Ling Rui
    Wang Lizhi
    Huang Xueli
    Dan Qiang
    Zhang Jie
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 7922 - 7927
  • [7] Circularity of Lithium-Ion Battery Materials in Electric Vehicles
    Dunn, Jessica
    Slattery, Margaret
    Kendall, Alissa
    Ambrose, Hanjiro
    Shen, Shuhan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (08) : 5189 - 5198
  • [8] Multifunctional structural lithium-ion battery for electric vehicles
    Zhang, Yancheng
    Ma, Jun
    Singh, Abhendra K.
    Cao, Lei
    Seo, Jiho
    Rahn, Christopher D.
    Bakis, Charles E.
    Hickner, Michael A.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2017, 28 (12) : 1603 - 1613
  • [9] Modeling for Lithium-Ion Battery used in Electric Vehicles
    Xiong, Rui
    He, Hongwen
    Guo, Hongqiang
    Ding, Yin
    CEIS 2011, 2011, 15
  • [10] Integration of a lithium-ion battery into hybrid and electric vehicles
    Neumeister, Dirk
    Wiebelt, Achim
    Heckenberger, Thomas
    AutoTechnology, 2010, 10 (02): : 26 - 31