Spatial Regression Using Kernel Averaged Predictors

被引:10
|
作者
Heaton, Matthew J. [1 ]
Gelfand, Alan E. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
关键词
Block averaging; Circular neighborhoods; Distributed covariates; Multivariate Gaussian process; Spatial linear model; MODEL;
D O I
10.1007/s13253-010-0050-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Traditional spatial linear regression models assume that the mean of the response is a linear combination of predictors measured at the same location as the response. In spatial applications, however, it seems plausible that neighboring predictors can also inform about the response. This article proposes using unobserved kernel averaged predictors in such regressions. The kernels are parametric introducing additional parameters that are estimated with the data. Properties and challenges of using kernel averaged predictors within a regression model are detailed in the simple case of a univariate response and a single predictor. Additionally, extensions to multiple predictors and generalized linear models are discussed. The methods are demonstrated using a data set of dew duration and shrub density. Supplemental materials are available online.
引用
收藏
页码:233 / 252
页数:20
相关论文
共 50 条
  • [1] Spatial Regression Using Kernel Averaged Predictors
    Matthew J. Heaton
    Alan E. Gelfand
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16 : 233 - 252
  • [2] Kernel averaged predictors for spatio-temporal regression models
    Heaton, Matthew J.
    Gelfand, Alan E.
    [J]. SPATIAL STATISTICS, 2012, 2 : 15 - 32
  • [3] Nonlinear forecasting with many predictors using kernel ridge regression
    Exterkate, Peter
    Groenen, Patrick J. F.
    Heij, Christiaan
    van Dijk, Dick
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (03) : 736 - 753
  • [4] SPATIAL MORPHING KERNEL REGRESSION FOR FEATURE INTERPOLATION
    Deng, Xueqing
    Zhu, Yi
    Newsam, Shawn
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2182 - 2186
  • [5] Spatial kernel regression estimation: weak consistency
    Lu, ZD
    Chen, X
    [J]. STATISTICS & PROBABILITY LETTERS, 2004, 68 (02) : 125 - 136
  • [6] Kernel regression estimation for continuous spatial processes
    Dabo-Niang S.
    Yao A.-F.
    [J]. Mathematical Methods of Statistics, 2007, 16 (4) : 298 - 317
  • [7] A Reinforcement Learning Method for Layout Design of Planar and Spatial Trusses using Kernel Regression
    Luo, Ruifeng
    Wang, Yifan
    Liu, Zhiyuan
    Xiao, Weifang
    Zhao, Xianzhong
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [8] Dimension reduction in spatial regression with kernel SAVE method
    Affossogbe, Metolidji Moquilas Raymond
    Nkiet, Guy Martial
    Ogouyandjou, Carlos
    [J]. COMPTES RENDUS MATHEMATIQUE, 2021, 359 (04) : 475 - 479
  • [9] NONPARAMETRIC KERNEL REGRESSION WITH MULTIPLE PREDICTORS AND MULTIPLE SHAPE CONSTRAINTS
    Du, Pang
    Parmeter, Christopher F.
    Racine, Jeffrey S.
    [J]. STATISTICA SINICA, 2013, 23 (03) : 1347 - 1371
  • [10] Local Linear Least Squares Kernel Regression for Linear and Circular Predictors
    Qin, Xu
    Zhang, Jiang-She
    Yan, Xiao-Dong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (21) : 3812 - 3823