Dimension reduction in spatial regression with kernel SAVE method

被引:0
|
作者
Affossogbe, Metolidji Moquilas Raymond [1 ]
Nkiet, Guy Martial [2 ]
Ogouyandjou, Carlos [1 ]
机构
[1] Inst Math & Sci Phys, Porto Novo, Benin
[2] Univ Sci & Tech Masuku, Franceville, Gabon
关键词
SLICED INVERSE REGRESSION; NONPARAMETRIC-ESTIMATION; DENSITY-ESTIMATION;
D O I
10.5802/crmath.187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the smoothed version of sliced average variance estimation (SAVE) dimension reduction method for dealing with spatially dependent data that are observations of a strongly mixing random field. We propose kernel estimators for the interest matrix and the effective dimension reduction (EDR) space, and show their consistency.
引用
收藏
页码:475 / 479
页数:5
相关论文
共 50 条
  • [1] SAVE: A method for dimension reduction and graphics in regression
    Cook, RD
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (9-10) : 2109 - 2121
  • [2] KERNEL DIMENSION REDUCTION IN REGRESSION
    Fukumizu, Kenji
    Bach, Francis R.
    Jordan, Michael I.
    [J]. ANNALS OF STATISTICS, 2009, 37 (04): : 1871 - 1905
  • [3] AN INTRODUCTION TO DIMENSION REDUCTION IN NONPARAMETRIC KERNEL REGRESSION
    Girard, S.
    Saracco, J.
    [J]. STATISTICS FOR ASTROPHYSICS: METHODS AND APPLICATIONS OF THE REGRESSION, 2015, 66 : 167 - +
  • [4] Nonlinear Dimension Reduction with Kernel Sliced Inverse Regression
    Yeh, Yi-Ren
    Huang, Su-Yun
    Lee, Yuh-Jye
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (11) : 1590 - 1603
  • [5] Gradient-Based Kernel Dimension Reduction for Regression
    Fukumizu, Kenji
    Leng, Chenlei
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 359 - 370
  • [6] Dimension reduction for spatial regression: Spatial predictor envelope
    May, Paul
    Rekabdarkolaee, Hossein Moradi
    [J]. SPATIAL STATISTICS, 2024, 61
  • [7] Nonlinear surface regression with dimension reduction method
    Yoshida, Takuma
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2017, 101 (01) : 29 - 50
  • [8] Nonlinear surface regression with dimension reduction method
    Takuma Yoshida
    [J]. AStA Advances in Statistical Analysis, 2017, 101 : 29 - 50
  • [9] Generalized kernel-based inverse regression methods for sufficient dimension reduction
    Xie, Chuanlong
    Zhu, Lixing
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [10] Dimension reduction for regression estimation with nearest neighbor method
    Cadre, Benoit
    Dong, Qian
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 436 - 460