A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes

被引:87
|
作者
Weiss, Elsa [1 ]
Groenen-Serrano, Karine [1 ]
Savall, Andre [1 ]
机构
[1] Univ Toulouse 3, Lab Genie Chim, CNRS, F-31062 Toulouse 9, France
关键词
electrooxidation; boron doped diamond; lead dioxide; phenol; energy consumption; waste waters;
D O I
10.1007/s10800-007-9442-x
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work compares two electrode materials used to mineralize phenol contained in waste waters. Two disks covered with either boron doped diamond (BDD) or PbO2 were used as anodes in a one compartment flow cell under the same hydrodynamic conditions. Efficiencies of galvanostatic electrolyses are compared on the basis of measurements of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD). Galvanostatic electrolyses were monitored by analysis of phenol and of its oxidation derivatives to evaluate the operating time needed for complete elimination of toxic aromatics. The experimental current efficiency is close to the theoretical value for the BDD electrode. Other parameters being equal, phenol species disappeared at the same rate using the two electrode materials but the BDD anode showed better efficiency to eliminate TOC and COD. Moreover, during the electrolysis less intermediates are formed with BDD compared to PbO2 whatever the current density. A comparison of energy consumption is given based on the criterion of 99% removal of aromatic compounds.
引用
收藏
页码:329 / 337
页数:9
相关论文
共 50 条
  • [21] Electrochemical synthesis of peroxodiphosphate using boron-doped diamond anodes
    Cañizares, P
    Larrondo, F
    Lobato, J
    Rodrigo, MA
    Sáez, C
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : D191 - D196
  • [22] Electrochemical Oxidation of Sulfonamides with Boron-Doped Diamond and Pt Anodes
    Li, Hongna
    Jiang, Huan
    Liu, Chong
    Zhu, Changxiong
    Zhu, Xiuping P.
    CHEMISTRYOPEN, 2019, 8 (12): : 1421 - 1428
  • [23] Electrochemical decolourisation of dispersed indigo on boron-doped diamond anodes
    Bechtold, Thomas
    Turcanu, Aurora
    Schrott, Wolfgang
    DIAMOND AND RELATED MATERIALS, 2006, 15 (10) : 1513 - 1519
  • [24] Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes
    Weiss, E.
    Sáez, C.
    Groenen-Serrano, K.
    Cañizares, P.
    Savall, A.
    Rodrigo, M.A.
    Journal of Applied Electrochemistry, 2008, 38 (01): : 93 - 100
  • [25] Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes
    E. Weiss
    C. Sáez
    K. Groenen-Serrano
    P. Cañizares
    A. Savall
    M. A. Rodrigo
    Journal of Applied Electrochemistry, 2008, 38 : 93 - 100
  • [26] Electrochemical mineralization pathway of quinoline by boron-doped diamond anodes
    Wang, Chunrong
    Ma, Keke
    Wu, Tingting
    Ye, Min
    Tan, Peng
    Yan, Kecheng
    CHEMOSPHERE, 2016, 149 : 219 - 223
  • [27] Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes
    Cañizares, P
    Lobato, J
    Paz, R
    Rodrigo, MA
    Sáez, C
    WATER RESEARCH, 2005, 39 (12) : 2687 - 2703
  • [28] Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes
    Weiss, E.
    Saez, C.
    Groenen-Serrano, K.
    Canizares, P.
    Savall, A.
    Rodrigo, M. A.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2008, 38 (01) : 93 - 100
  • [29] Competition between electrochemical advanced oxidation and electrochemical hypochlorination of acetaminophen at boron-doped diamond and ruthenium dioxide based anodes
    Boudreau, Jordache
    Bejan, Dorin
    Bunce, Nigel J.
    CANADIAN JOURNAL OF CHEMISTRY, 2010, 88 (05) : 418 - 425
  • [30] The use of boron-doped diamond electrodes for the electrochemical oxidation of phenol
    O'Grady, WE
    Natishan, PM
    Stoner, BR
    Hagans, PL
    DIAMOND MATERIALS VII, PROCEEDINGS, 2001, 2002 (25): : 1 - +