Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models

被引:30
|
作者
Safikhani, Abolfazl [1 ]
Kamga, Camille [2 ]
Mudigonda, Sandeep [3 ]
Faghih, Sabiheh Sadat [2 ]
Moghimi, Bahman [2 ]
机构
[1] Columbia Univ, Dept Stat, 1255 Amsterdam Ave, New York, NY 10027 USA
[2] CUNY, New York, NY 10021 USA
[3] CUNY City Coll, New York, NY USA
关键词
STARMA; Spatio-temporal; Time series; Taxi demand prediction; SPACE; MULTIVARIATE; SHRINKAGE;
D O I
10.1016/j.ijforecast.2018.10.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
The spatio-temporal variation in the demand for transportation, particularly taxis, in the highly dynamic urban space of a metropolis such as New York City is impacted by various factors such as commuting, weather, road work and closures, disruptions in transit services, etc. This study endeavors to explain the user demand for taxis through space and time by proposing a generalized spatio-temporal autoregressive (STAR) model. It deals with the high dimensionality of the model by proposing the use of LASSO-type penalized methods for tackling parameter estimation. The forecasting performance of the proposed models is measured using the out-of-sample mean squared prediction error (MSPE), and the proposed models are found to outperform other alternative models such as vector autoregressive (VAR) models. The proposed modeling framework has an easily interpretable parameter structure and is suitable for practical application by taxi operators. The efficiency of the proposed model also helps with model estimation in real-time applications. (C) 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1138 / 1148
页数:11
相关论文
共 50 条
  • [31] A generalized architecture for hardware synthesis of spatio-temporal memory models for image processing
    Norell, H
    O'Nils, M
    [J]. IWSSIP 2005: PROCEEDINGS OF THE 12TH INTERNATIONAL WORSHOP ON SYSTEMS, SIGNALS & IMAGE PROCESSING, 2005, : 361 - 365
  • [32] Deep hierarchical generalized transformation models for spatio-temporal data with discrepancy errors
    Bradley, Jonathan R.
    Zhou, Shijie
    Liu, Xu
    [J]. SPATIAL STATISTICS, 2023, 55
  • [33] Spatio-temporal modeling of city events combining datasets in cyberspace and real space
    Tang L.
    Dai L.
    Ren C.
    Zhang X.
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (05): : 618 - 629
  • [34] Modeling interaction using learnt qualitative spatio-temporal relations and variable length Markov models
    Galata, A
    Cohn, A
    Magee, D
    Hogg, D
    [J]. ECAI 2002: 15TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 77 : 741 - 745
  • [35] sp Timer: Spatio-Temporal Bayesian Modeling Using R
    Bakar, Khandoker Shuvo
    Sahu, Sujit K.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2015, 63 (15): : 1 - 32
  • [36] Spatio-temporal modeling of global ozone data using convolution
    Yang Li
    Zhengyuan Zhu
    [J]. Japanese Journal of Statistics and Data Science, 2020, 3 : 153 - 166
  • [37] Modeling Spatio-temporal Change Pattern using Mathematical Morphology
    Das, Monidipa
    Ghosh, Soumya K.
    [J]. PROCEEDINGS OF THE THIRD ACM IKDD CONFERENCE ON DATA SCIENCES (CODS), 2016,
  • [38] Spatio-temporal modeling of global ozone data using convolution
    Li, Yang
    Zhu, Zhengyuan
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (01) : 153 - 166
  • [39] Estimating likelihoods for spatio-temporal models using importance sampling
    Glenn Marion
    Gavin Gibson
    Eric Renshaw
    [J]. Statistics and Computing, 2003, 13 : 111 - 119
  • [40] Modeling Dynamic Beach Objects Using Spatio-Temporal Ontologies
    van de Vlag, D.
    Stein, A.
    [J]. JOURNAL OF ENVIRONMENTAL INFORMATICS, 2006, 8 (01) : 22 - 33