ON MINMAX AND MAXMIN INEQUALITIES FOR CENTERED CONVEX BODIES

被引:0
|
作者
Mustafaev, Zokhrab
机构
来源
关键词
Busemann measure; cross-section measures; Holmes-Thompson measure; rel-ative inner radius; intersection body; isoperimetrix; radial function; relative outer radius; projection body; support function;
D O I
10.7153/mia-2022-25-57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the challenging problems from the geometry of (normed or) Minkowki spaces is the question of whether the unit ball must be an ellipsoid if it is a solution of the corresponding isoperimetric problem. The inner and outer radii of the unit ball with respect to the corresponding isoperimetrix (represented in terms of cross-section measures) will be used to establish a result on this problem for a specific measure. Some new minmax and maxmin inequalities for centered convex bodies will also be established.
引用
下载
收藏
页数:2
相关论文
共 50 条
  • [1] LATTICE POINT INEQUALITIES FOR CENTERED CONVEX BODIES
    Berg, Soeben Lenna
    Henk, Martin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) : 1148 - 1158
  • [2] Some new minimax inequalities for centered convex bodies
    Martini, Horst
    Mustafaev, Zokhrab
    Zarbaliev, Sakhavet M.
    AEQUATIONES MATHEMATICAE, 2024,
  • [3] CENTERED CONVEX BODIES AND INEQUALITIES FOR CROSS-SECTION MEASURES
    Martini, Horst
    Mustafaev, Zokhrab
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 759 - 767
  • [4] Necessary Conditions for Maxmin=Minmax
    F. Forgó
    I. Joó
    Acta Mathematica Hungarica, 1997, 77 : 123 - 135
  • [5] Necessary conditions for maxmin=minmax
    Forgo, F
    Joo, I
    ACTA MATHEMATICA HUNGARICA, 1997, 77 (1-2) : 123 - 135
  • [6] MAXMIN AND MINMAX FOR COALITIONAL GAME FORMS
    ABDOU, J
    GAMES AND ECONOMIC BEHAVIOR, 1991, 3 (03) : 267 - 277
  • [7] Inequalities for convex bodies and their polar bodies
    Wei, Bo
    Wang, Weidong
    ARCHIV DER MATHEMATIK, 2013, 100 (05) : 491 - 500
  • [8] Inequalities for convex bodies and their polar bodies
    Bo Wei
    Weidong Wang
    Archiv der Mathematik, 2013, 100 : 491 - 500
  • [9] Stochastic Resource Allocation Problems: Minmax and Maxmin Solutions
    Ninh, Anh
    Shen, Zuo-. Tun Max
    M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT, 2024, : 2322 - 2335
  • [10] Slicing inequalities for measures of convex bodies
    Koldobsky, Alexander
    ADVANCES IN MATHEMATICS, 2015, 283 : 473 - 488