Quantile regression based on counting process approach under semi-competing risks data

被引:2
|
作者
Hsieh, Jin-Jian [1 ]
Wang, Hong-Rui [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Math, 168 Univ Rd, Min Hsiung, Chia Yi, Taiwan
关键词
Copula model; Dependent censoring; Quantile regression; Semi-competing risks data; SEMICOMPETING RISKS; CENSORED-DATA; SURVIVAL ANALYSIS; MODELS;
D O I
10.1007/s10463-016-0593-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the quantile regression analysis for semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The estimation of quantile regression parameters for the non-terminal event is complicated. We cannot make inference on the non-terminal event without extra assumptions. Thus, we handle this problem by assuming that the joint distribution of the terminal event and the non-terminal event follows a parametric copula model with unspecified marginal distributions. We use the stochastic property of the martingale method to estimate the quantile regression parameters under semi-competing risks data. We also prove the large sample properties of the proposed estimator, and introduce a model diagnostic approach to check model adequacy. From simulation results, it shows that the proposed estimator performs well. For illustration, we apply our proposed approach to analyze a real data.
引用
收藏
页码:395 / 419
页数:25
相关论文
共 50 条
  • [21] Frailty modelling approaches for semi-competing risks data
    Ha, Il Do
    Xiang, Liming
    Peng, Mengjiao
    Jeong, Jong-Hyeon
    Lee, Youngjo
    [J]. LIFETIME DATA ANALYSIS, 2020, 26 (01) : 109 - 133
  • [22] Frailty modelling approaches for semi-competing risks data
    Il Do Ha
    Liming Xiang
    Mengjiao Peng
    Jong-Hyeon Jeong
    Youngjo Lee
    [J]. Lifetime Data Analysis, 2020, 26 : 109 - 133
  • [23] Flexible association modelling and prediction with semi-competing risks data
    Li, Ruosha
    Cheng, Yu
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (03): : 361 - 374
  • [24] Likelihood-Based Inference for Semi-Competing Risks
    Heuchenne, Cedric
    Laurent, Stephane
    Legrand, Catherine
    Van Keilegom, Ingrid
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (05) : 1112 - 1132
  • [25] Two-sample test based on empirical likelihood ratio under semi-competing risks data
    Hsieh, Jin-Jian
    Li, Jyun-Peng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (10) : 3301 - 3311
  • [26] A causal framework for surrogate endpoints with semi-competing risks data
    Ghosh, Debashis
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (11) : 1898 - 1902
  • [27] Competing Risks Quantile Regression
    Peng, Limin
    Fine, Jason P.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) : 1440 - 1453
  • [28] Regression models for interval-censored semi-competing risks data with missing intermediate transition status
    Kim, Jinheum
    Kim, Jayoun
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1311 - 1327
  • [29] Bayesian Analysis of Survival Data with Semi-competing Risks and Treatment Switching
    Zhang, Yuanye
    Chen, Qingxia
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Zeng, Donglin
    Pan, Zhiying
    Xue, Xiaodong
    [J]. TOPICS IN APPLIED STATISTICS, 2013, 55 : 159 - 169
  • [30] The analysis of semi-competing risks data using Archimedean copula models
    Wang, Antai
    Guo, Ziyan
    Zhang, Yilong
    Wu, Jihua
    [J]. STATISTICA NEERLANDICA, 2024, 78 (01) : 191 - 207