Deficiencies of lattice subgroups of Lie groups

被引:6
|
作者
Lott, J [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0024609398004901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be a lattice in a connected Lie group. We show that, besides a few exceptional cases, the deficiency of Gamma is nonpositive.
引用
收藏
页码:191 / 195
页数:5
相关论文
共 50 条
  • [41] Extremal subgroups in twisted Lie type groups
    Parker, CW
    Rowley, PJ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 498 : 135 - 152
  • [42] Equidistribution of dense subgroups on nilpotent Lie groups
    Breuillard, Emmanuel
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 131 - 150
  • [43] Degeneration of discrete subgroups of semisimple Lie groups
    Paulin, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (11): : 1217 - 1220
  • [44] An Ennola duality for subgroups of groups of Lie type
    David A. Craven
    Monatshefte für Mathematik, 2022, 199 : 785 - 799
  • [45] PRIMITIVE ACTIONS AND MAXIMAL SUBGROUPS OF LIE GROUPS
    GOLUBITS.M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 136 - &
  • [46] ALMOST ABELIAN LIE GROUPS, SUBGROUPS AND QUOTIENTS
    Rios M.A.
    Avetisyan Z.
    Berlow K.
    Martin I.
    Rakholia G.
    Yang K.
    Zhang H.
    Zhao Z.
    Journal of Mathematical Sciences, 2022, 266 (1) : 42 - 65
  • [47] DENSE SUBGROUPS OF LIE GROUPS .2.
    ZERLING, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 246 (DEC) : 419 - 428
  • [48] Instability of nondiscrete free subgroups in lie groups
    Glutsyuk, Alexey
    TRANSFORMATION GROUPS, 2011, 16 (02) : 413 - 479
  • [49] On minimal parabolic subgroups of exponential Lie groups
    Dokovic, DZ
    JOURNAL OF LIE THEORY, 2000, 10 (01) : 213 - 220
  • [50] Dense subgroups with Property (T) in Lie groups
    de Cornulier, Yves
    COMMENTARII MATHEMATICI HELVETICI, 2008, 83 (01) : 55 - 65