DYNAMIC FRACTURE TESTS OF POLYMETHYLMETHACRYLATE USING A SEMICIRCULAR BEND TECHNIQUE

被引:14
|
作者
Huang, Sheng [1 ,2 ]
Luo, Sheng-Nian [3 ]
Tatone, Bryan S. A. [1 ,2 ]
Xia, Kaiwen [1 ,2 ]
机构
[1] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada
[2] Univ Toronto, Lassonde Inst, Toronto, ON M5S 1A4, Canada
[3] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA
基金
加拿大自然科学与工程研究理事会;
关键词
dynamic fracture; PMMA; fracture toughness; semicircular bend; fracture velocity; surface roughness; HOPKINSON PRESSURE BAR; SURFACE-ROUGHNESS; CRACK INITIATION; LOADING RATE; 4340; STEEL; TOUGHNESS; PMMA; ROCK; PROPAGATION; PARAMETERS;
D O I
10.2140/jomms.2011.6.813
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We adopt a recently developed technique, dynamic semicircular bend testing, to measure the fracture initiation toughness, fracture propagation toughness, and fracture velocity of polymethylmethacrylate (PMMA). A modified split Hopkinson pressure bar system is used to apply the dynamic load. In this method, both the fracture initiation toughness and fracture energy, and thus the average fracture propagation toughness, are determined. The initiation toughness is found to be similar to the propagation toughness, and both toughnesses are loading rate-dependent. Our initiation toughness values for PMMA are in accord with those reported in the independent literature. The fracture velocity increases and then becomes saturated as the propagation toughness increases. We also measure the fracture surface roughness of the recovered fragments. While the surface roughness increases with the fracture energy, the increase of surface area alone is not sufficient to accommodate the increase in fracture energy, suggesting other energy dissipation mechanisms in the dynamic fracture process besides free surface creation.
引用
收藏
页码:813 / 826
页数:14
相关论文
共 50 条
  • [21] FRACTURE-BEHAVIOR OF A LAMINATED STEEL BRASS COMPOSITE IN BEND TESTS
    OHASHI, Y
    WOLFENSTINE, J
    KOCH, R
    SHERBY, OD
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1992, 151 (01): : 37 - 44
  • [22] Analysis of fracture tests on large bend beams containing an embedded flaw
    Nilsson, KF
    Taylor, N
    Minnebo, P
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2006, 83 (01) : 72 - 83
  • [23] An Analysis of the Components of Tests of Semicircular Canal Function and of Static and Dynamic Balance
    Bass, Ruth I.
    RESEARCH QUARTERLY, 1939, 10 (02): : 33 - 52
  • [24] DETERMINATION OF DYNAMIC FRACTURE-INITIATION TOUGHNESS USING A NOVEL IMPACT BEND TEST PROCEDURE
    YOKOYAMA, T
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 1993, 115 (04): : 389 - 397
  • [25] Determination of dynamic fracture toughness using a new experimental technique
    Cady, Carl M.
    Liu, Cheng
    Lovato, Manuel L.
    DYMAT 2015 - 11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING, 2015, 94
  • [26] Numerical simulation of dynamic fracture toughness tests: using RKR criterion
    Jianhua Pan
    Mingjie Guo
    SN Applied Sciences, 2019, 1
  • [27] Numerical simulation of dynamic fracture toughness tests: using RKR criterion
    Pan, Jianhua
    Guo, Mingjie
    SN APPLIED SCIENCES, 2019, 1 (09):
  • [28] Tests for dynamic fracture of interconnected cracks
    Yang R.
    Su H.
    Chen C.
    Gong Y.
    Zhang Y.
    Su, Hong (suhonggy2016@163.com), 1600, Chinese Vibration Engineering Society (36): : 134 - 139
  • [29] DYNAMIC TESTS OF BRITTLE FRACTURE WITH RECORDING
    GRUMBACH, M
    PRUDHOMM.M
    SANZ, G
    REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 1969, 66 (04): : 271 - &
  • [30] RETRACTION: Determination of Dynamic Fracture Parameters of Westerly Granite Using the Notched Semi-circular Bend Technique in Split Hopkinson Pressure Bar Testing
    Chen, Xuguang
    Xu, Ying
    Yao, Wei
    Zhu, Jianbo
    ROCK MECHANICS AND ROCK ENGINEERING, 2017, 50 (05) : 1355 - 1355