Free Brownian motion of relativistic particles

被引:11
|
作者
Zygadlo, R [1 ]
机构
[1] Jagiellonian Univ, Marian Smoluchowski Inst Phys, PL-30059 Krakow, Poland
关键词
D O I
10.1016/j.physleta.2005.07.049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relativistic generalization of a free Brownian motion theory is presented. The global characteristics of the relaxation are explicitly found for the velocity and momentum (stochastic) kinetics. It is shown that the thermal corrections, to the both relaxation times T (of stationary autocorrelations) and transient relaxation time of momentum, appear slowing down the processes. The transient relaxation time of the velocity does not depend explicitly on temperature, T(upsilon(o)) = m(upsilon(o))/gamma equivalent to epsilon(0)/gamma c(2) and it is proportional to the initial energy of a relativistic Brownian particle. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:323 / 329
页数:7
相关论文
共 50 条
  • [31] Complex motion of Brownian particles with energy depots
    Schweitzer, F
    Ebeling, W
    Tilch, B
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (23) : 5044 - 5047
  • [32] The motion of repulsive Brownian particles in quenched disorder
    Liu, G
    Li, BG
    Han, RS
    Yang, SD
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 241 - 244
  • [33] On motion of Brownian particles along a delaying screen
    Rasova S.S.
    Harlamov B.P.
    [J]. Journal of Mathematical Sciences, 2013, 188 (6) : 737 - 747
  • [34] Complex motion of Brownian particles with energy supply
    Ebeling, W
    Erdmann, U
    Schimansky-Geier, L
    Schweitzer, F
    [J]. STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 183 - 190
  • [35] Brownian motion of suspended particles in an anisotropic medium
    Hsia, YF
    Fang, N
    Widatallah, HM
    Wu, DM
    Lee, XM
    Zhang, JR
    [J]. HYPERFINE INTERACTIONS, 2000, 126 (1-4): : 401 - 406
  • [36] Stochastic Spacetime and Brownian Motion of Test Particles
    L. H. Ford
    [J]. International Journal of Theoretical Physics, 2005, 44 : 1753 - 1768
  • [37] Condensation of SIP Particles and Sticky Brownian Motion
    Mario Ayala
    Gioia Carinci
    Frank Redig
    [J]. Journal of Statistical Physics, 2021, 183
  • [38] Active brownian motion of pairs and swarms of particles
    Ebeling, W.
    [J]. ACTA PHYSICA POLONICA B, 2007, 38 (05): : 1657 - 1671
  • [39] Fractional Brownian motion of particles in capillary waves
    Schroder, E
    Levinsen, MT
    Alstrom, P
    [J]. PHYSICA A, 1997, 239 (1-3): : 314 - 321
  • [40] MOTION OF BROWNIAN PARTICLES IN A TILTED PERIODIC POTENTIAL
    MELNIKOV, VI
    [J]. JETP LETTERS, 1984, 40 (02) : 787 - 791