DeepVideoMVS: Multi-View Stereo on Video with Recurrent Spatio-Temporal Fusion

被引:35
|
作者
Duzceker, Arda [1 ]
Galliani, Silvano [2 ]
Vogel, Christoph [2 ]
Speciale, Pablo [2 ]
Dusmanu, Mihai [1 ]
Pollefeys, Marc [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
[2] Microsoft Mixed Real & AI Zurich Lab, Zurich, Switzerland
关键词
D O I
10.1109/CVPR46437.2021.01507
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an online multi-view depth prediction approach on posed video streams, where the scene geometry information computed in the previous time steps is propagated to the current time step in an efficient and geometrically plausible way. The backbone of our approach is a real-time capable, lightweight encoder-decoder that relies on cost volumes computed from pairs of images. We extend it by placing a ConvLSTM cell at the bottleneck layer, which compresses an arbitrary amount of past information in its states. The novelty lies in propagating the hidden state of the cell by accounting for the viewpoint changes between time steps. At a given time step, we warp the previous hidden state into the current camera plane using the previous depth prediction. Our extension brings only a small overhead of computation time and memory consumption, while improving the depth predictions significantly. As a result, we outperform the existing state-of-the-art multi-view stereo methods on most of the evaluated metrics in hundreds of indoor scenes while maintaining a real-time performance. Code available: https://github.com/ardaduz/deep-video-mvs
引用
收藏
页码:15319 / 15328
页数:10
相关论文
共 50 条
  • [41] ST-COVID: a Deep Multi-View Spatio-temporal Model for COVID-19 Forecasting
    Ju, Chang
    Wang, Jingping
    Zhang, Yingjun
    Yin, Hui
    Huang, Hua
    Xu, Hongli
    [J]. 2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 769 - 776
  • [42] Multi-Codec Video Quality Enhancement Model Based on Spatio-Temporal Deformable Fusion
    Kreisler, Gilberto
    da Silveira Junior, Garibaldi
    Zatt, Bruno
    Palomino, Daniel
    Correa, Guilherme
    [J]. 15TH IEEE LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS, LASCAS 2024, 2024, : 163 - 167
  • [43] View Synthesised Prediction with Temporal Texture Synthesis for Multi-View Video
    Rahaman, D. M. Motiur
    Paul, Manoranjan
    [J]. 2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 729 - 736
  • [44] A Spatio-Temporal-Contour-consistency-based shape tracking framework from multi-view video
    Huang, Chu-Hua
    Qin, Jin
    Li, Zhi
    [J]. Journal of Computers (Taiwan), 2019, 30 (03): : 102 - 116
  • [45] Spatio-temporal Sampling for Video
    Shankar, Mohan
    Pitsiauis, Nikos P.
    Brady, David
    [J]. IMAGE RECONSTRUCTION FROM INCOMPLETE DATA V, 2008, 7076
  • [46] A distributed compress sensing codec model in multi-view stereo video
    School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
    不详
    [J]. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban), 2012, 10 (895-902):
  • [47] Spatio-Temporal Stereo Using Multi-Resolution Subdivision Surfaces
    Jan Neumann
    Yiannis Aloimonos
    [J]. International Journal of Computer Vision, 2002, 47 : 181 - 193
  • [48] Video-based, real-time multi-view stereo
    Vogiatzis, George
    Hernandez, Carlos
    [J]. IMAGE AND VISION COMPUTING, 2011, 29 (07) : 434 - 441
  • [49] From 2D-to stereo- to multi-view video
    Knorr, Sebastian
    Smolic, AlJoscha
    Sikora, Thomas
    [J]. 2007 3DTV CONFERENCE, 2007, : 229 - +
  • [50] Spatio-temporal stereo using multi-resolution subdivision surfaces
    Neumann, J
    Aloimonos, Y
    [J]. IEEE WORKSHOP ON STEREO AND MULTI-BASELINE VISION, PROCEEDINGS, 2001, : 103 - 108