Stability of one-dimensional boundary layers by using Green's functions

被引:38
|
作者
Grenier, E [1 ]
Rousset, F [1 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMPA, UMR 5669, F-69364 Lyon 07, France
关键词
D O I
10.1002/cpa.10006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate the stability of one-dimensional boundary layers of parabolic systems as the viscosity goes to 0 in the noncharacteristic case and, more precisely, to prove that spectral stability implies linear and nonlinear stability of approximate solutions. In particular, we replace the smallness condition obtained by the energy method [10, 13] by a weaker spectral condition. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:1343 / 1385
页数:43
相关论文
共 50 条
  • [1] STABILITY OF BOUNDARY LAYERS FOR A VISCOUS HYPERBOLIC SYSTEM ARISING FROM CHEMOTAXIS: ONE-DIMENSIONAL CASE
    Hou, Qianqian
    Liu, Cheng-Jie
    Wang, Ya-Guang
    Wang, Zhian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (03) : 3058 - 3091
  • [2] BULK GREEN'S FUNCTIONS IN ONE-DIMENSIONAL UNSTEADY PROBLEMS OF ELASTIC DIFFUSION
    Igumnov, L. A.
    Tarlakovskii, D., V
    Zemskov, A., V
    MATERIALS PHYSICS AND MECHANICS, 2019, 42 (02): : 191 - 197
  • [4] ADIABATIC OSCILLATIONS OF ONE-DIMENSIONAL SGEMP BOUNDARY-LAYERS
    STETTNER, R
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1977, 24 (06) : 2461 - 2466
  • [5] Boundary conditions and the stability of one-dimensional conducting polymers
    Wei, Jianhua
    Xie, Shijie
    Mei, Liangmo
    Wuli Xuebao/Acta Physica Sinica, 1997, 46 (04): : 747 - 755
  • [6] Investigating asymptotic suction boundary layers using a one-dimensional stochastic turbulence model
    Fragner, Moritz M.
    Schmidt, Heiko
    JOURNAL OF TURBULENCE, 2017, 18 (10): : 899 - 928
  • [7] LINEAR VLASOV STABILITY IN ONE-DIMENSIONAL DOUBLE LAYERS.
    Tiechmann, J.
    Laser and Particle Beams, 1986, 5 (pt 2) : 287 - 293
  • [8] LINEAR VLASOV STABILITY IN ONE-DIMENSIONAL DOUBLE-LAYERS
    TEICHMANN, J
    LASER AND PARTICLE BEAMS, 1987, 5 : 287 - 293
  • [9] One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics
    Barker, Blake
    Humpherys, Jeffrey
    Zumbrun, Kevin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (09) : 2175 - 2213
  • [10] Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect
    Zhang, Liangliang
    Wu, Di
    Xu, Wenshuai
    Yang, Lianzhi
    Ricoeur, Andreas
    Wang, Zhibin
    Gao, Yang
    PHYSICS LETTERS A, 2016, 380 (39) : 3222 - 3228