Glassy phases and driven response of the phase-field-crystal model with random pinning

被引:14
|
作者
Granato, E. [1 ,2 ]
Ramos, J. A. P. [1 ,3 ]
Achim, C. V. [4 ,5 ]
Lehikoinen, J. [4 ]
Ying, S. C. [2 ]
Ala-Nissila, T. [2 ,4 ]
Elder, K. R. [6 ]
机构
[1] Inst Nacl Pesquisas Espaciais, Lab Associado Sensores & Mat, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[2] Brown Univ, Dept Phys, Providence, RI 02912 USA
[3] Univ Estadual Sudoeste Bahia, Dept Ciencias Exatas, BR-45000000 Vitoria Da Conquista, BA, Brazil
[4] Aalto Univ, Sch Sci, Dept Appl Phys, FI-00076 Espoo, Finland
[5] Univ Dusseldorf, Inst Theoret Phys Weiche Materie 2, DE-40225 Dusseldorf, Germany
[6] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 03期
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
LATTICES;
D O I
10.1103/PhysRevE.84.031102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Glassy phases and driven response of the phase-field-crystal model with random pinning
    Granato, E.
    Ramos, J.A.P.
    Achim, C.V.
    Lehikoinen, J.
    Ying, S.C.
    Ala-Nissila, T.
    Elder, K.R.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2011, 84 (03):
  • [2] Stability of liquid crystalline phases in the phase-field-crystal model
    Achim, Cristian V.
    Wittkowski, Raphael
    Loewen, Hartmut
    [J]. PHYSICAL REVIEW E, 2011, 83 (06):
  • [3] Dynamical transitions and sliding friction of the phase-field-crystal model with pinning
    Ramos, J. A. P.
    Granato, E.
    Ying, S. C.
    Achim, C. V.
    Elder, K. R.
    Ala-Nissila, T.
    [J]. PHYSICAL REVIEW E, 2010, 81 (01):
  • [4] Elastic strain response in the modified phase-field-crystal model
    周文权
    王锦程
    王志军
    黄赟浩
    郭灿
    李俊杰
    郭耀麟
    [J]. Chinese Physics B, 2017, 26 (09) : 110 - 117
  • [5] Phase-field-crystal model of phase and microstructural stability in driven nanocrystalline systems
    Ofori-Opoku, Nana
    Hoyt, Jeffrey J.
    Provatas, Nikolas
    [J]. PHYSICAL REVIEW E, 2012, 86 (06):
  • [6] Elastic strain response in the modified phase-field-crystal model
    Zhou, Wenquan
    Wang, Jincheng
    Wang, Zhijun
    Huang, Yunhao
    Guo, Can
    Li, Junjie
    Guo, Yaolin
    [J]. CHINESE PHYSICS B, 2017, 26 (09)
  • [7] Scale-coupling and interface-pinning effects in the phase-field-crystal model
    Huang, Zhi-Feng
    [J]. PHYSICAL REVIEW E, 2013, 87 (01):
  • [8] Phase-field-crystal model for fcc ordering
    Wu, Kuo-An
    Adland, Ari
    Karma, Alain
    [J]. PHYSICAL REVIEW E, 2010, 81 (06):
  • [9] Phase-field-crystal model for ordered crystals
    Alster, Eli
    Elder, K. R.
    Hoyt, Jeffrey J.
    Voorhees, Peter W.
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [10] A phase-field-crystal model for liquid crystals
    Loewen, Hartmut
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (36)