Elastic strain response in the modified phase-field-crystal model

被引:6
|
作者
Zhou, Wenquan [1 ]
Wang, Jincheng [1 ]
Wang, Zhijun [1 ]
Huang, Yunhao [1 ]
Guo, Can [1 ]
Li, Junjie [1 ]
Guo, Yaolin [2 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Ningbo Inst Ind Technol, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
elastic response; strain distribution; shear modulus; modified phase-field-crystal model; 2; DIMENSIONS; SIMULATION; DEFORMATION;
D O I
10.1088/1674-1056/26/9/090702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modified phase-field-crystal (MPFC) model. The results show that two different propagation modes control the elastic interaction length and time, which determine whether the density waves can propagate or not. By quantitatively calculating the strain field, we find that the strain distribution is indeed extremely uniform in case of elasticity. Further, we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus. The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Elastic strain response in the modified phase-field-crystal model
    周文权
    王锦程
    王志军
    黄赟浩
    郭灿
    李俊杰
    郭耀麟
    [J]. Chinese Physics B, 2017, 26 (09) : 110 - 117
  • [2] Modified phase-field-crystal model for solid-liquid phase transitions
    Guo, Can
    Wang, Jincheng
    Wang, Zhijun
    Li, Junjie
    Guo, Yaolin
    Tang, Sai
    [J]. PHYSICAL REVIEW E, 2015, 92 (01):
  • [3] Phase-field-crystal model for fcc ordering
    Wu, Kuo-An
    Adland, Ari
    Karma, Alain
    [J]. PHYSICAL REVIEW E, 2010, 81 (06):
  • [4] Phase-field-crystal model for ordered crystals
    Alster, Eli
    Elder, K. R.
    Hoyt, Jeffrey J.
    Voorhees, Peter W.
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [5] A phase-field-crystal model for liquid crystals
    Loewen, Hartmut
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (36)
  • [6] Glassy phases and driven response of the phase-field-crystal model with random pinning
    Granato, E.
    Ramos, J. A. P.
    Achim, C. V.
    Lehikoinen, J.
    Ying, S. C.
    Ala-Nissila, T.
    Elder, K. R.
    [J]. PHYSICAL REVIEW E, 2011, 84 (03):
  • [7] Glassy phases and driven response of the phase-field-crystal model with random pinning
    Granato, E.
    Ramos, J.A.P.
    Achim, C.V.
    Lehikoinen, J.
    Ying, S.C.
    Ala-Nissila, T.
    Elder, K.R.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2011, 84 (03):
  • [8] On the phase-field-crystal model with logarithmic nonlinear terms
    Alain Miranville
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 145 - 157
  • [9] Phase-Field-Crystal Model for Electromigration in Metal Interconnects
    Wang, Nan
    Bevan, Kirk H.
    Provatas, Nikolas
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (15)
  • [10] Amplitude expansion of the binary phase-field-crystal model
    Elder, K. R.
    Huang, Zhi-Feng
    Provatas, Nikolas
    [J]. PHYSICAL REVIEW E, 2010, 81 (01):