Concurrent FFT computing on multicore processors

被引:0
|
作者
Barhen, J. [1 ]
Humble, T. [1 ]
Mitra, P. [1 ,2 ]
Imam, N. [1 ]
Schleck, B. [3 ]
Kotas, C. [1 ]
Traweek, M. [4 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, CESAR, Oak Ridge, TN 37831 USA
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
[3] Coherent Logix Inc, Austin, TX 78746 USA
[4] Off Naval Res, Maritime Sensing Branch, Arlington, VA 22203 USA
来源
关键词
multicore processors; FFT; HyperX; IBM cell; transverse vectorization;
D O I
10.1002/cpe.1746
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The emergence of streaming multicore processors with multi-SIMD (single-instruction multiple-data) architectures and ultra-low power operation combined with real-time compute and I/O reconfigurability opens unprecedented opportunities for executing sophisticated signal processing algorithms faster and within a much lower energy budget. Here, we present an unconventional Fast Fourier Transform (FFT) implementation scheme for the IBM Cell, named transverse vectorization. It is shown to outperform (both in terms of timing and GFLOP throughput) the fastest FFT results reported to date for the Cell in the open literature. We also provide the first results for multi-FFT implementation and application on the novel, ultra-low power Coherent Logix HyperX processor. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 50 条
  • [1] Real-Time Computing on Multicore Processors
    Sha, Lui
    Caccamo, Marco
    Mancuso, Renato
    Kim, Jung-Eun
    Yoon, Man-Ki
    Pellizzoni, Rodolfo
    Yun, Heechul
    Kegley, Russell B.
    Perlman, Dennis R.
    Arundale, Greg
    Bradford, Richard
    [J]. COMPUTER, 2016, 49 (09) : 69 - 77
  • [2] Towards Concurrent Stateful Stream Processing on Multicore Processors
    Zhang, Shuhao
    Wu, Yingjun
    Zhang, Feng
    He, Bingsheng
    [J]. 2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 1537 - 1548
  • [3] Concurrent and Accurate Short Read Mapping on Multicore Processors
    Martinez, Hector
    Tarraga, Joaquin
    Medina, Ignacio
    Barrachina, Sergio
    Castillo, Maribel
    Dopazo, Joaquin
    Quintana-Orti, Enrique S.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (05) : 995 - 1007
  • [4] A concurrent fault-detection scheme for FFT processors
    Tsunoyama, M
    Uenoyama, M
    Kabasawa, T
    [J]. SIXTH ASIAN TEST SYMPOSIUM (ATS'97), PROCEEDINGS, 1997, : 94 - 99
  • [5] Multicore processors and GPUs: the power of parallel computing in the Cloud
    Bennett, Kelly W.
    Robertson, James
    [J]. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS II, 2020, 11413
  • [6] A Fully Concurrent Garbage Collector for Functional Programs on Multicore Processors
    Ueno, Katsuhiro
    Ohori, Atsushi
    [J]. ACM SIGPLAN NOTICES, 2016, 51 (09) : 421 - 433
  • [7] Concurrent Parallel Processing on Graphics and Multicore Processors with OpenACC and OpenMP
    Stone, Christopher P.
    Davis, Roger L.
    Lee, Daryl Y.
    [J]. ACCELERATOR PROGRAMMING USING DIRECTIVES, WACCPD 2017, 2018, 10732 : 103 - 122
  • [8] pTest: An Adaptive Testing Tool for Concurrent Software on Embedded Multicore Processors
    Chang, Shou-Wei
    Hsieh, Kun-Yuan
    Lee, Jenq Kuen
    [J]. DATE: 2009 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, VOLS 1-3, 2009, : 1012 - 1017
  • [9] A survey on hardware-aware and heterogeneous computing on multicore processors and accelerators
    Buchty, Rainer
    Heuveline, Vincent
    Karl, Wolfgang
    Weiss, Jan-Philipp
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2012, 24 (07): : 663 - 675
  • [10] Performance Optimization of Multithreaded 2D FFT on Multicore Processors: Challenges and Solution Approaches
    Khokhriakov, Semyon
    Manumachu, Ravi Reddy
    Lastovetsky, Alexey
    [J]. 2018 IEEE 25TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING WORKSHOPS (HIPCW), 2018, : 8 - 17