On the asymptotics of penalized spline smoothing

被引:36
|
作者
Wang, Xiao [1 ]
Shen, Jinglai [2 ]
Ruppert, David [3 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47909 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[3] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
来源
基金
美国国家科学基金会;
关键词
Boundary kernel; difference penalty; equivalent kernel; Green's function; P-spline; EQUIVALENT KERNEL; REGRESSION;
D O I
10.1214/10-EJS593
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper performs an asymptotic analysis of penalized spline estimators. We compare P-splines and splines with a penalty of the type used with smoothing splines. The asymptotic rates of the supremum norm of the difference between these two estimators over compact subsets of the interior and over the entire interval are established. It is shown that a P-spline and a smoothing spline are asymptotically equivalent provided that the number of knots of the P-spline is large enough, and the two estimators have the same equivalent kernels for both interior points and boundary points.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Debt policy in euro area countries: Evidence for Germany and Italy using penalized spline smoothing
    Greiner, Alfred
    Kauermann, Goeran
    [J]. ECONOMIC MODELLING, 2008, 25 (06) : 1144 - 1154
  • [22] A Marginal Approach to Reduced-Rank Penalized Spline Smoothing With Application to Multilevel Functional Data
    Chen, Huaihou
    Wang, Yuanjia
    Paik, Myunghee Cho
    Choi, H. Alex
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (504) : 1216 - 1229
  • [23] Penalized spline smoothing using Kaplan-Meier weights in semiparametric censored regression models
    Orbe, Jesus
    Virto, Jorge
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2022, 46 (01) : 95 - 114
  • [24] Bootstrapping for Penalized Spline Regression
    Kauermann, Goeran
    Claeskens, Gerda
    Opsomer, J. D.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 126 - 146
  • [25] Asymptotics for the smoothing cubic spline estimate in a longitudinal regression model with random process noise.
    Degras, D
    Jallet, R
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 340 (11) : 851 - 854
  • [26] SMOOTHING BY SPLINE FUNCTIONS
    REINSCH, CH
    [J]. NUMERISCHE MATHEMATIK, 1967, 10 (03) : 177 - &
  • [27] A SIMPLE SMOOTHING SPLINE
    EUBANK, RL
    [J]. AMERICAN STATISTICIAN, 1994, 48 (02): : 103 - 106
  • [28] Smoothing spline ANOPOW
    Stoffer, David S.
    Han, Sangdae
    Qin, Li
    Guo, Wensheng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3789 - 3796
  • [29] Smoothing an arc spline
    Li, Z
    Meek, DS
    [J]. COMPUTERS & GRAPHICS-UK, 2005, 29 (04): : 576 - 587
  • [30] Constrained spline smoothing
    Kopotun, K.
    Leviatan, D.
    Prymak, A. V.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 1985 - 1997