Simple anisotropic three-dimensional quantum spin liquid with fractonlike topological order

被引:36
|
作者
Petrova, O. [1 ]
Regnault, N. [2 ]
机构
[1] PSL Res Univ, Dept Phys, Ecole Normale Super, CNRS, 24 Rue Lhomond, F-75005 Paris, France
[2] UPMC Univ Paris 06, Sorbonne Paris Cite,CNRS, Sorbonne Univ,Dept Phys,Lab Pierre Aigrain, Univ Paris Diderot,PSL Res Univ,Ecole Normale Supe, F-75005 Paris, France
关键词
D O I
10.1103/PhysRevB.96.224429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a three-dimensional cubic lattice spin model, anisotropic in the (z)over cap direction, that exhibits fractonlike order. This order can be thought of as the result of interplay between two-dimensional Z(2) topological order and spontaneous symmetry breaking along the (z)over cap direction. Fracton order is a novel type of topological order characterized by the presence of immobile pointlike excitations, named fractons, residing at the corners of an operator with two-dimensional support. As other recent fracton models, ours exhibits a subextensive ground-state degeneracy: On an L-x x L-y x L-z three-torus, it has a 2(2Lz) topological degeneracy and an additional symmetry-breaking nontopological degeneracy equal to 2(LxLy-2). The fractons can be combined into composite excitations that move either in a straight line along the (z)over cap direction or freely in the xy plane at a given height z. While our model draws inspiration from the toric code, we demonstrate that it cannot be adiabatically connected to a layered toric code construction. Additionally, we investigate the effects of imposing open boundary conditions on our system. We find zero energy modes on the surfaces perpendicular to either the (x)over cap or (y)over cap directions and their absence on the surfaces normal to (z)over cap. This result can be explained using the properties of the two kinds of composite two-fracton mobile excitations.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Quantum Simulation for Three-Dimensional Chiral Topological Insulator
    Ji, Wentao
    Zhang, Lin
    Wang, Mengqi
    Zhang, Long
    Guo, Yuhang
    Chai, Zihua
    Rong, Xing
    Shi, Fazhan
    Liu, Xiong-Jun
    Wang, Ya
    Du, Jiangfeng
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (02)
  • [22] Berry phase for a three-dimensional anisotropic quantum dot
    Geyler, VA
    Shorokhov, A
    [J]. PHYSICS LETTERS A, 2005, 335 (01) : 1 - 10
  • [23] Three-Dimensional Quantum Cellular Automata from Chiral Semion Surface Topological Order and beyond
    Shirley, Wilbur
    Chen, Yu-An
    Dua, Arpit
    Ellison, Tyler D.
    Tantivasadakarn, Nathanan
    Williamson, Dominic J.
    [J]. PRX QUANTUM, 2022, 3 (03):
  • [24] Possible realization of three-dimensional quantum spin liquid behavior in HoVO4
    Ranaut, Dheeraj
    Shastri, Shivprasad S.
    Pandey, Sudhir K.
    Mukherjee, K.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (48)
  • [25] Evidence for a three-dimensional quantum spin liquid in PbCuTe2O6
    Chillal, Shravani
    Iqbal, Yasir
    Jeschke, Harald O.
    Rodriguez-Rivera, Jose A.
    Bewley, Robert
    Manuel, Pascal
    Khalyavin, Dmitry
    Steffens, Paul
    Thomale, Ronny
    Islam, A. T. M. Nazmul
    Reuther, Johannes
    Lake, Bella
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [26] Evidence for a three-dimensional quantum spin liquid in PbCuTe2O6
    Shravani Chillal
    Yasir Iqbal
    Harald O. Jeschke
    Jose A. Rodriguez-Rivera
    Robert Bewley
    Pascal Manuel
    Dmitry Khalyavin
    Paul Steffens
    Ronny Thomale
    A. T. M. Nazmul Islam
    Johannes Reuther
    Bella Lake
    [J]. Nature Communications, 11
  • [27] Spin transport in the frustrated anisotropic three-dimensional XY model
    Lima, L. S.
    [J]. SOLID STATE COMMUNICATIONS, 2016, 248 : 115 - 119
  • [28] Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate
    K. A. Modic
    Tess E. Smidt
    Itamar Kimchi
    Nicholas P. Breznay
    Alun Biffin
    Sungkyun Choi
    Roger D. Johnson
    Radu Coldea
    Pilanda Watkins-Curry
    Gregory T. McCandless
    Julia Y. Chan
    Felipe Gandara
    Z. Islam
    Ashvin Vishwanath
    Arkady Shekhter
    Ross D. McDonald
    James G. Analytis
    [J]. Nature Communications, 5
  • [29] Spin generation via bulk spin current in three-dimensional topological insulators
    Xingyue Peng
    Yiming Yang
    Rajiv R.P. Singh
    Sergey Y. Savrasov
    Dong Yu
    [J]. Nature Communications, 7
  • [30] Spin generation via bulk spin current in three-dimensional topological insulators
    Peng, Xingyue
    Yang, Yiming
    Singh, Rajiv R. P.
    Savrasov, Sergey Y.
    Yu, Dong
    [J]. NATURE COMMUNICATIONS, 2016, 7