Advances in laboratory-scale ptychography using high harmonic sources [Invited]

被引:27
|
作者
Loetgering, Lars [1 ,2 ,3 ,4 ]
Witte, Stefan [5 ,6 ]
Rothhardt, Jan [1 ,2 ,3 ,7 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Appl Phys, Albert Einstein Str 15, D-07745 Jena, Germany
[2] Friedrich Schiller Univ Jena, Abbe Ctr Photon, Albert Einstein Str 15, D-07745 Jena, Germany
[3] Helmholtz Inst Jena, Frobelstieg 3, D-07743 Jena, Germany
[4] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[5] Vrije Univ Amsterdam, De Boelelaan 1105, NL-1081 HV Amsterdam, Netherlands
[6] ARCNL, Sci Pk 106, NL-1098 XG Amsterdam, Netherlands
[7] Fraunhofer Inst Appl Opt & Precis Engn, Albert Einstein Str 7, D-07745 Jena, Germany
基金
欧洲研究理事会;
关键词
EXTREME-ULTRAVIOLET LIGHT; X-RAY MICROSCOPY; RESOLUTION TABLETOP MICROSCOPY; SPATIAL-COHERENCE MEASUREMENT; PHASE RETRIEVAL ALGORITHMS; HIGH-REPETITION-RATE; DIFFRACTION MICROSCOPY; SOURCE DRIVEN; HIGH-SPEED; SOFT;
D O I
10.1364/OE.443622
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Extreme ultraviolet microscopy and wavefront sensing are key elements for nextgeneration ultrafast applications, such as chemically-resolved imaging, focal spot diagnostics in pump-and-probe experiments, and actinic metrology for the state-of-the-art lithography node at 13.5 nm wavelength. Ptychography offers a robust solution to the aforementioned challenges. Originally adapted by the electron and synchrotron communities, advances in the stability and brightness of high-harmonic tabletop sources have enabled the transfer of ptychography to the laboratory. This review covers the state of the art in tabletop ptychography with high harmonic generation sources. We consider hardware options such as illumination optics and detector concepts as well as algorithmic aspects in the analysis of multispectral ptychography data. Finally, we review technological application cases such as multispectral wavefront sensing, attosecond pulse characterization, and depth-resolved imaging. Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:4133 / 4164
页数:32
相关论文
共 50 条
  • [21] Bioleaching of a cobaltiferous pyrite: A continuous laboratory-scale study at high solids concentration
    dHugues, P
    Cezac, P
    Cabral, T
    Battaglia, F
    TruongMeyer, XM
    Morin, D
    [J]. MINERALS ENGINEERING, 1997, 10 (05) : 507 - 527
  • [22] Analysis of Macrosegregation in Laboratory-Scale Experiment Using Al-Cu Alloy
    Satou, Fumihito
    Esaka, Hisao
    Shinozuka, Kei
    [J]. TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2013, 99 (02): : 101 - 107
  • [23] Estimating the surface and volume of laboratory-scale wildfire fuel using computer vision
    Rossi, L.
    Molinier, T.
    Akhloufi, M.
    Tison, Y.
    Pieri, A.
    [J]. IET IMAGE PROCESSING, 2012, 6 (08) : 1031 - 1040
  • [24] Characterization of rock weathering using elastic waves: A Laboratory-scale experimental study
    Lee, Jong-Sub
    Yoon, Hyung-Koo
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2017, 140 : 24 - 33
  • [25] Web-based remote experimentation using a laboratory-scale optical tracker
    Junge, TF
    Schmid, C
    [J]. PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2951 - 2954
  • [26] Sediment modeling using laboratory-scale rainfall simulator and laser precipitation monitor
    Jadhao, V. G.
    Pandey, Ashish
    Mishra, S. K.
    [J]. ENVIRONMENTAL RESEARCH, 2023, 237
  • [27] Laboratory-scale continuous treatment of monosodium glutamate manufacturing wastewater using yeast
    Hei, Liang
    Yang, Qingxiang
    Yang, Min
    Zhang, Songwu
    [J]. Huanjing Kexue/Environmental Science, 2002, 23 (04):
  • [28] Performance Analysis for Laboratory-Scale Microgrid using Experimental Testing and MPSO Technique
    Kotb, M. F.
    Hatata, A. Y.
    [J]. 2017 NINETEENTH INTERNATIONAL MIDDLE-EAST POWER SYSTEMS CONFERENCE (MEPCON), 2017, : 934 - 940
  • [29] Printing and scaling of metallic traces and capacitors using a laboratory-scale rotogravure press
    Vornbrock, Alejandro de la Fuente
    Ding, Jau M.
    Sung, Donovan
    Tseng, Huai-Yuan
    Subramanian, Vivek
    [J]. 2009 FLEXIBLE ELECTRONICS & DISPLAYS CONFERENCE AND EXHIBIITON, 2009, : 54 - +
  • [30] Study of a laboratory-scale froth flotation process using artificial neural networks
    Kalyani, V. K.
    Pallavika
    Chaudhuri, Sanjay
    Charan, T. Gouri
    Haldar, D. D.
    Kamal, K. P.
    Badhe, Y. P.
    Tambe, S. S.
    Kulkarni, B. D.
    [J]. MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, 2008, 29 (02): : 130 - 142