Spectroscopic Ellipsometry of Nanocrystalline Diamond Film Growth

被引:17
|
作者
Thomas, Evan L. H. [1 ]
Mandal, Soumen [1 ]
Ashek-I-Ahmed [2 ]
Macdonald, John Emyr [1 ]
Dane, Thomas G. [3 ]
Rawle, Jonathan [4 ]
Cheng, Chia-Liang [2 ]
Williams, Oliver A. [1 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales
[2] Natl Dong Hwa Univ, Dept Phys, Hualien 97401, Taiwan
[3] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[4] Diamond Light Source, Beamline I07,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England
来源
ACS OMEGA | 2017年 / 2卷 / 10期
基金
英国工程与自然科学研究理事会;
关键词
CHEMICAL-VAPOR-DEPOSITION; BIAS-ENHANCED NUCLEATION; CARBIDE THIN-FILMS; CVD DIAMOND; REAL-TIME; RAMAN-SPECTROSCOPY; SURFACE-ROUGHNESS; SILICON; PLASMA; MICROSCOPY;
D O I
10.1021/acsomega.7b00866
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the retention of many of the unrivaled properties of bulk diamond but in thin-film form, nanocrystalline diamond (NCD) has applications ranging from micro-/nano-electromechanical systems to tribological coatings. However, with Young's modulus, transparency, and thermal conductivity of films all dependent on the grain size and nondiamond content, compositional and structural analysis of the initial stages of diamond growth is required to optimize growth. Spectroscopic ellipsometry (SE) has therefore been applied to the characterization of 25-75 nm thick NCD samples atop nanodiamond-seeded silicon with a clear distinction between the nucleation and bulk growth regimes discernable. The resulting presence of an interfacial carbide and peak in nondiamond carbon content upon coalescence is correlated with Raman spectroscopy, whereas the surface roughness and microstructure are in accordance with values provided by atomic force microscopy. As such, SE is demonstrated to be a powerful technique for the characterization of the initial stages of growth and hence the optimization of seeding and nucleation within films to yield high-quality NCD.
引用
收藏
页码:6715 / 6727
页数:13
相关论文
共 50 条
  • [21] In-situ studies of the growth of amorphous and nanocrystalline silicon using real time spectroscopic ellipsometry
    Levi, DH
    Nelson, BP
    Iwanizcko, E
    Teplin, CW
    THIN SOLID FILMS, 2004, 455 : 679 - 683
  • [22] Optical characterization of surface roughness of diamond by spectroscopic ellipsometry
    Kumagai, N
    Yamasaki, S
    Okushi, H
    DIAMOND AND RELATED MATERIALS, 2004, 13 (11-12) : 2092 - 2095
  • [23] Optical characterization of surface roughness of diamond by spectroscopic ellipsometry
    Kumagai, N. (nkumagai@iis.u-tokyo.ac.jp), (Elsevier Ltd):
  • [24] COPPER PHTHALOCYANINE FILM STUDIED WITH SPECTROSCOPIC ELLIPSOMETRY
    GU, DH
    CHEN, QY
    OPTICS COMMUNICATIONS, 1994, 110 (5-6) : 576 - 580
  • [25] Nanocrystalline diamond film for biosensor applications
    Qureshi, Anjum
    Gurbuz, Yasar
    Howell, Mick
    Kang, Weng P.
    Davidson, Jimmy L.
    DIAMOND AND RELATED MATERIALS, 2010, 19 (5-6) : 457 - 461
  • [26] Hydrogen on nanocrystalline diamond film surfaces
    Zemek, J.
    Houdkova, J.
    Jiricek, P.
    Kozak, H.
    Kromka, A.
    DIAMOND AND RELATED MATERIALS, 2012, 26 : 66 - 70
  • [27] Elastic constant of nanocrystalline diamond film
    Ikeda, R.
    Tanei, H.
    Nakamura, N.
    Ogi, H.
    Hirao, M.
    Sawabe, A.
    Takemoto, M.
    DIAMOND AND RELATED MATERIALS, 2006, 15 (4-8) : 729 - 734
  • [28] Spectroscopic impedance study of nanocrystalline diamond films
    Ye, HT
    Jackman, RB
    Hing, P
    JOURNAL OF APPLIED PHYSICS, 2003, 94 (12) : 7878 - 7882
  • [29] Optical spectroscopy and spectroscopic ellipsometry as a monitor for thin film growth by dc magnetron sputtering
    Abundiz-Cisneros, N.
    Perez-Garcia, A.
    Gomez-Munoz, M.
    Machorro, R.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (13)
  • [30] In situ spectroscopic ellipsometry as a surface-sensitive tool to probe thin film growth
    Liu, C
    Erdmann, J
    Macrander, A
    THIN SOLID FILMS, 1999, 355 : 41 - 48