MGR: Metric Learning with Graph Neural Networks for Multi-behavior Recommendation

被引:0
|
作者
Yuan, Yuan [1 ]
Tang, Yan [1 ]
Du, Luomin [1 ]
Chen, Yingpei [1 ]
机构
[1] Southwest Univ, Coll Comp & Informat Sci, Chongqing, Peoples R China
关键词
Recommender system; Knowledge graph; Graph neural networks; Temporal information; Metric learning;
D O I
10.1007/978-3-031-10983-6_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional recommendation methods often suffer from the problems of sparsity and cold start. Therefore, researchers usually leverage Knowledge Graph as a kind of side information to alleviate these issues and improve the accuracy of recommendation results. However, most existing studies focus on modeling the single behavior of user-item interactions, ignoring the active effects of the multi-type behavior information in the recommendation performance. In view of this, we propose Metric Learning with Graph Neural Networks for Multi-behavior Recommendation (MGR), a novel sequential recommendation framework that considers both temporal dynamics and semantic information. Specifically, the temporal encoding strategy is used to model dynamic user preferences. In addition, the Graph Neural Network is utilized to capture the information from high-order nodes so as to mine the semantic description in multi-behavior interactions. Finally, symmetric metric learning helps to sort the item list to accomplish the Top-K recommendation task. Extensive experiments in three real-world datasets demonstrate that MGR outperforms the state-of-the-art recommendation methods.
引用
下载
收藏
页码:466 / 477
页数:12
相关论文
共 50 条
  • [11] Dual graph attention networks for multi-behavior recommendation
    Yunhe Wei
    Huifang Ma
    Yike Wang
    Zhixin Li
    Liang Chang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 2831 - 2846
  • [12] Cascading graph contrastive learning for multi-behavior recommendation
    Yang, Jiangquan
    Li, Xiangxia
    Li, Bin
    Tian, Lianfang
    Xu, Bo
    Chen, Yanhong
    Neurocomputing, 2024, 610
  • [13] Management and Monitoring of Multi-Behavior Recommendation Systems Using Graph Convolutional Neural Networks
    Liu, Changwei
    Wang, Kexin
    Wu, Aman
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2022, 33 (06N07) : 583 - 601
  • [14] Heterogeneous Multi-Behavior Recommendation Based on Graph Convolutional Networks
    Rang, Ran
    Xing, Linlin
    Zhang, Longbo
    Cai, Hongzhen
    Sun, Zhaojie
    IEEE ACCESS, 2023, 11 : 22574 - 22584
  • [15] Multi-Behavior Graph Neural Networks for Recommender System
    Xia, Lianghao
    Huang, Chao
    Xu, Yong
    Dai, Peng
    Bo, Liefeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5473 - 5487
  • [16] A cascaded embedding method with graph neural network for multi-behavior recommendation
    Jiang, Shaopeng
    Zhao, Chao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (06) : 2513 - 2526
  • [17] Multi-behavior Recommendation with Two-Level Graph Attentional Networks
    Wei, Yunhe
    Ma, Huifang
    Wang, Yike
    Li, Zhixin
    Chang, Liang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 248 - 255
  • [18] Graph Meta Network for Multi-Behavior Recommendation
    Xia, Lianghao
    Xu, Yong
    Huang, Chao
    Dai, Peng
    Bo, Liefeng
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 757 - 766
  • [19] Research on Efficient Multi-Behavior Recommendation Method Fused with Graph Neural Network
    Lu, Huitong
    Deng, Xiaolong
    Lu, Junwen
    ELECTRONICS, 2023, 12 (09)
  • [20] Heterogeneous Graph Neural Network for Multi-behavior Feature-Interaction Recommendation
    Ma, Li
    Chen, Zheng
    Fu, Yingxun
    Li, Yang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 101 - 112