Complexity through Translations for Modal Logic with Recursion

被引:1
|
作者
Aceto, Luca [1 ,2 ]
Achilleos, Antonis [1 ]
Anastasiadi, Elli [1 ]
Francalanza, Adrian [3 ]
Ingolfsdottir, Anna [1 ]
机构
[1] Reykjavik Univ, Dept Comp Sci, Reykjavik, Iceland
[2] Gran Sasso Sci Inst, Laquila, Italy
[3] Univ Malta, Dept Comp Sci, ICT, Msida, Malta
关键词
MU-CALCULUS; HIERARCHY; INFINITE;
D O I
10.4204/EPTCS.370.3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies the complexity of classical modal logics , of their extension with fixed-point operators, using translations to transfer results across logics. In particular, we show several complex-ity results for multi-agent logics via translations to and from the & mu;-calculus and modal logic, which allow us to transfer known upper and lower bounds. We also use these translations to introduce a terminating tableau system for the logics we study, based on Kozen's tableau for the & mu;-calculus , the one of Fitting and Massacci for modal logic.
引用
收藏
页码:34 / 48
页数:15
相关论文
共 50 条
  • [31] Binary modal logic and unary modal logic
    de Jongh, Dick
    Maleki, Fatemeh Shirmohammadzadeh
    LOGIC JOURNAL OF THE IGPL, 2024, 32 (03) : 420 - 441
  • [32] Similarity logic and translations
    Crisconio, C
    Donato, D
    Gerla, G
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2004, 12 (03) : 257 - 267
  • [33] MODAL TRANSLATIONS IN SUBSTRUCTURAL LOGICS
    DOSEN, K
    JOURNAL OF PHILOSOPHICAL LOGIC, 1992, 21 (03) : 283 - 336
  • [34] THE EFFECT OF BOUNDING THE NUMBER OF PRIMITIVE PROPOSITIONS AND THE DEPTH OF NESTING ON THE COMPLEXITY OF MODAL LOGIC
    HALPERN, JY
    ARTIFICIAL INTELLIGENCE, 1995, 75 (02) : 361 - 372
  • [35] Decidability and complexity of the fragments of the modal logic of Allen's relations over the rationals
    Bresolin, D.
    Della Monica, D.
    Montanari, A.
    Sala, R.
    Sciavicco, G.
    INFORMATION AND COMPUTATION, 2019, 266 : 97 - 125
  • [36] SIMULTANEOUS BOUNDED RECURSION AND COMPLEXITY CLASSES
    LISKIEWICZ, M
    LORYS, K
    PIOTROW, M
    JOURNAL OF SYMBOLIC LOGIC, 1986, 51 (02) : 491 - 491
  • [37] A THEORY OF COMPLEXITY OF MONADIC RECURSION SCHEMES
    DIKOVSKII, AJ
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1981, 15 (01): : 67 - 94
  • [38] Toward recursion aware complexity metrics
    Rakic, Gordana
    Toth, Melinda
    Budimac, Zoran
    INFORMATION AND SOFTWARE TECHNOLOGY, 2020, 118
  • [39] Monitorability for the Hennessy–Milner logic with recursion
    Adrian Francalanza
    Luca Aceto
    Anna Ingolfsdottir
    Formal Methods in System Design, 2017, 51 : 87 - 116
  • [40] COMPLEXITY OF FINITE MEMORY PROGRAMS WITH RECURSION
    JONES, ND
    MUCHNICK, SS
    JOURNAL OF THE ACM, 1978, 25 (02) : 312 - 321