A hybrid continuous energy and multi-group Monte Carlo method

被引:1
|
作者
Kowalski, Mikolaj Adam [1 ]
Shwageraus, Eugene [1 ]
机构
[1] Univ Cambridge, Engn Dept, Trumpington St, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
Variable fidelity; Monte Carlo; Multi-group Monte Carlo; DELTA-TRACKING;
D O I
10.1016/j.anucene.2019.107277
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This paper investigates mixing multi-group (MG) and continuous energy (CE) representation of cross-sections depending on location of a particle in a Monte Carlo neutronic eigenvalue calculations in 1D and 2D PWR test cases with UOX and MOX fuel. Different population normalisation needs to be applied to CE and MG region to account for the difference in criticality between CE and MG representation. This normalisation procedure requires a neutron production rate ratio between CE and MG region to be known a priori. A resonance correction in energy spectrum during transition of a particle between the MG and CE region was developed based on the equivalence resonance treatment theory. With these, it was shown that it is possible to accelerate total calculation time, while introducing only a moderate error below 1% in the fission rate distribution. The magnitude of acceleration is heavily dependent on the relative size of CE and MG zones. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Comparison of a 3D multi-group SN particle transport code with Monte Carlo for intercavitary brachytherapy of the cervix uteri
    Gifford, Kent A.
    Wareing, Todd A.
    Failla, Gregory
    Horton, John L., Jr.
    Eifel, Patricia J.
    Mourtada, Firas
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2010, 11 (01): : 2 - 9
  • [32] Multi-group lattice Boltzmann method for criticality problems
    Agarwal, Gaurav
    Singh, Suneet
    Bindra, Hitesh
    ANNALS OF NUCLEAR ENERGY, 2020, 140
  • [33] A penalized likelihood method for multi-group structural equationmodelling
    Huang, Po-Hsien
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2018, 71 (03): : 499 - 522
  • [34] Kinetic energy choice in Hamiltonian/hybrid Monte Carlo
    Livingstone, S.
    Faulkner, M. F.
    Roberts, G. O.
    BIOMETRIKA, 2019, 106 (02) : 303 - 319
  • [35] A Quantum Monte Carlo method at fixed energy
    Farhi, Edward
    Goldstone, Jeffrey
    Gosset, David
    Meyer, Harvey B.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (08) : 1663 - 1673
  • [36] A Simplified Variable Metric Hybrid Monte Carlo Method
    Calvo, M. P.
    Rodrigo, I.
    Sanz-Serna, J. M.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 14 - 17
  • [37] AN SN-MONTE-CARLO HYBRID TRANSPORT METHOD
    FILIPPONE, WL
    GANAPOL, BD
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1982, 41 : 487 - 489
  • [38] A separable shadow Hamiltonian hybrid Monte Carlo method
    Sweet, Christopher R.
    Hampton, Scott S.
    Skeel, Robert D.
    Izaguirre, Jesus A.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (17):
  • [39] Multipoint Metropolis method with application to hybrid Monte Carlo
    Qin, ZHS
    Liu, JS
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (02) : 827 - 840
  • [40] A hybrid Monte Carlo method for simulation of quantum transport
    Gurov, Todor
    Atanassov, Emanouil
    Ivanovska, Sofiya
    NUMERICAL METHODS AND APPLICATIONS, 2007, 4310 : 156 - +