Nonclassical kernels in continuous-variable systems

被引:3
|
作者
Ghobadi, Roohollah [1 ,2 ]
机构
[1] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM; STATES; COHERENT;
D O I
10.1103/PhysRevA.104.052403
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Kernel methods are ubiquitous in classical machine learning, and recently their formal similarity with quantum mechanics has been established. To grasp the potential advantage of quantum machine learning, it is necessary to understand the distinction between nonclassical kernel functions and classical kernels. This paper builds on a recently proposed phase-space nonclassicality witness [Bohmann and Agudelo, Phys. Rev. Lett. 124, 133601 (2020)] to derive a witness for the kernel's quantumness in continuous-variable systems. We discuss the role of the kernel's nonclassicality in data distribution in the feature space and the effect of imperfect state preparation. Furthermore, we show that the nonclassical kernels lead to the quantum advantage in parameter estimation. Our work highlights the role of the phase-space correlation functions in understanding the distinction of classical machine learning from quantum machine learning.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Nonclassical correlations in non-Markovian continuous-variable systems
    Vasile, Ruggero
    Giorda, Paolo
    Olivares, Stefano
    Paris, Matteo G. A.
    Maniscalco, Sabrina
    [J]. PHYSICAL REVIEW A, 2010, 82 (01)
  • [2] Nonclassical Correlations in a Three-Mode Continuous-Variable System
    F. Siyouri
    M. Ziane
    M. El Baz
    Y. Hassouni
    [J]. Journal of Russian Laser Research, 2017, 38 : 27 - 36
  • [3] Nonclassical correlations in continuous-variable non-Gaussian Werner states
    Tatham, Richard
    Mista, Ladislav, Jr.
    Adesso, Gerardo
    Korolkova, Natalia
    [J]. PHYSICAL REVIEW A, 2012, 85 (02):
  • [4] Entanglement and squeezing in continuous-variable systems
    Gessner, Manuel
    Pezze, Luca
    Smerzi, Augusto
    [J]. QUANTUM, 2017, 1
  • [5] Separability criteria for continuous-variable systems
    Fujikawa, Kazuo
    [J]. PHYSICAL REVIEW A, 2009, 80 (01):
  • [6] Nonclassical resource for continuous-variable telecloning with non-Gaussian advantage
    Das, Sudipta
    Gupta, Rivu
    Dhar, Himadri Shekhar
    Sen, Aditi
    [J]. PHYSICAL REVIEW A, 2024, 110 (01)
  • [7] Disentanglement in bipartite continuous-variable systems
    Barbosa, F. A. S.
    de Faria, A. J.
    Coelho, A. S.
    Cassemiro, K. N.
    Villar, A. S.
    Nussenzveig, P.
    Martinelli, M.
    [J]. PHYSICAL REVIEW A, 2011, 84 (05)
  • [8] Entanglement quantification and purification in continuous-variable systems
    Parker, S
    Bose, S
    Plenio, MB
    [J]. PHYSICAL REVIEW A, 2000, 61 (03): : 8
  • [9] Optimal entanglement witnesses for continuous-variable systems
    Hyllus, P
    Eisert, J
    [J]. NEW JOURNAL OF PHYSICS, 2006, 8
  • [10] Quantum correlations for bipartite continuous-variable systems
    Ruifen Ma
    Jinchuan Hou
    Xiaofei Qi
    Yangyang Wang
    [J]. Quantum Information Processing, 2018, 17