Two quantum correlations Q and QP\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_\mathcal P$$\end{document} for (m+n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(m+n)$$\end{document}-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(m+n)$$\end{document}-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥QP\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q\ge Q_{\mathcal P}$$\end{document}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.
机构:
Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
Taiyuan Univ Sci & Technol, Sch Appl Sci, Taiyuan 030024, Peoples R ChinaShanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
Ma, Ruifen
Hou, Jinchuan
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R ChinaShanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
Hou, Jinchuan
Qi, Xiaofei
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
Shanxi Univ, Inst Big Data Sci & Ind, Taiyuan 030006, Peoples R ChinaShanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
Qi, Xiaofei
Wang, Yangyang
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R ChinaShanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
机构:
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, BrazilUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Barbosa, F. A. S.
de Faria, A. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Alfenas, Inst Ciencia & Tecnol, BR-37715400 Pocos De Caldas, MG, BrazilUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
de Faria, A. J.
Coelho, A. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, BrazilUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Coelho, A. S.
Cassemiro, K. N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Max Planck Inst Sci Light, DE-91058 Erlangen, GermanyUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Cassemiro, K. N.
Villar, A. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Max Planck Inst Sci Light, DE-91058 Erlangen, Germany
Univ Erlangen Nurnberg, Lehrstuhl Fuer Opt, DE-91058 Erlangen, GermanyUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Villar, A. S.
Nussenzveig, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, BrazilUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
Nussenzveig, P.
Martinelli, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, BrazilUniv Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil