Quantum correlations for bipartite continuous-variable systems

被引:0
|
作者
Ruifen Ma
Jinchuan Hou
Xiaofei Qi
Yangyang Wang
机构
[1] Shanxi University,Department of Mathematics
[2] Taiyuan University of Science and Technology,School of Applied Science
[3] Taiyuan University of Technology,Department of Mathematics
[4] Shanxi University,Institute of Big Data Science and Industry
来源
关键词
Quantum correlation; Continuous-variable systems; Gaussian states; Gaussian measurement;
D O I
暂无
中图分类号
学科分类号
摘要
Two quantum correlations Q and QP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_\mathcal P$$\end{document} for (m+n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+n)$$\end{document}-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+n)$$\end{document}-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥QP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\ge Q_{\mathcal P}$$\end{document}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.
引用
收藏
相关论文
共 50 条
  • [1] Quantum correlations for bipartite continuous-variable systems
    Ma, Ruifen
    Hou, Jinchuan
    Qi, Xiaofei
    Wang, Yangyang
    QUANTUM INFORMATION PROCESSING, 2018, 17 (04)
  • [2] Disentanglement in bipartite continuous-variable systems
    Barbosa, F. A. S.
    de Faria, A. J.
    Coelho, A. S.
    Cassemiro, K. N.
    Villar, A. S.
    Nussenzveig, P.
    Martinelli, M.
    PHYSICAL REVIEW A, 2011, 84 (05)
  • [3] Bipartite entanglement in continuous-variable tripartite systems
    Olsen, M. K.
    Corney, J. F.
    OPTICS COMMUNICATIONS, 2016, 378 : 49 - 57
  • [4] Coexistence of unlimited bipartite and genuine multipartite entanglement: Promiscuous quantum correlations arising from discrete to continuous-variable systems
    Adesso, Gerardo
    Ericsson, Marie
    Illuminati, Fabrizio
    PHYSICAL REVIEW A, 2007, 76 (02):
  • [5] Experimental analysis of decoherence in continuous-variable bipartite systems
    Buono, D.
    Nocerino, G.
    Porzio, A.
    Solimeno, S.
    PHYSICAL REVIEW A, 2012, 86 (04):
  • [6] Local-channel-induced rise of quantum correlations in continuous-variable systems
    Ciccarello, Francesco
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [7] Rise of quantum correlations in non-Markovian environments in continuous-variable systems
    刘辛
    吴薇
    Chinese Physics B, 2014, 23 (07) : 267 - 272
  • [8] Rise of quantum correlations in non-Markovian environments in continuous-variable systems
    Xin, Liu
    Wei, Wu
    CHINESE PHYSICS B, 2014, 23 (07)
  • [9] Quantum-Classical Entropy Analysis for Nonlinearly-Coupled Continuous-Variable Bipartite Systems
    Sanz, Angel S.
    ENTROPY, 2022, 24 (02)
  • [10] Thermodynamic resources in continuous-variable quantum systems
    Varun Narasimhachar
    Syed Assad
    Felix C. Binder
    Jayne Thompson
    Benjamin Yadin
    Mile Gu
    npj Quantum Information, 7