DC-EAF power control using a sound-based foaming slag signal

被引:0
|
作者
Jansen, Tobias [1 ]
Krueger, Klaus [1 ]
Schliephake, Henning
Dettmer, Bernd
Deng, Jianxiong
机构
[1] Helmut Schmidt Univ, Univ Bundeswehr, Inst Automatisierungstech, Hamburg, Germany
来源
STAHL UND EISEN | 2010年 / 130卷 / 09期
关键词
ELECTRIC-ARC FURNACES;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Based on the acoustic sound emission and the electrical parameters, an algorithm for foaming slag detection at a DC-EAF is presented. Regardless of the currently applied electrical power, the model provides a reliable estimate of the slag level. Empirical studies at the DC-EAF of the Georgsmarienhutte GmbH demonstrate the applicability of the signal as a slag index. Thus a robust tool is given to detect a poorly shielded arc at an early stage. In a second step the slag signal was integrated into an existing power control concept. Aim is to adjust power input dynamically to the process conditions.
引用
收藏
页码:53 / +
页数:7
相关论文
共 50 条
  • [21] Sound-based multiple-equipment activity recognition using convolutional neural networks
    Sherafat, Behnam
    Rashidi, Abbas
    Asgari, Sadegh
    [J]. AUTOMATION IN CONSTRUCTION, 2022, 135
  • [22] VALIDATION OF A NEW SOUND-BASED METHOD FOR RECORDING VOIDING PARAMETERS USING SIMULTANEOUS UROFLOWMETRY
    Krhut, Jan
    Gaertner, Marcle
    Sykora, Radek
    Hurtik, Petr
    Burda, Michal
    Zvarova, Katarina
    Zvara, Peter
    [J]. JOURNAL OF UROLOGY, 2015, 193 (04): : E914 - E914
  • [23] Heart Sound-Based Cardiac Disorder Classifiers Using an SVM to Combine HMM and Murmur Scores
    Kwak, Chul
    Kwon, Oh-Wook
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2011, 30 (03): : 149 - 157
  • [24] Internal combustion engine sound-based fault detection and diagnosis using adaptive line enhancers
    Lee, S-K
    Kim, S. J.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2008, 222 (D4) : 593 - 605
  • [25] Online Offline Learning for Sound-Based Indoor Localization Using Low-Cost Hardware
    Machhamer, Ruediger
    Dziubany, Matthias
    Czenkusch, Levin
    Laux, Hendrik
    Schmeink, Anke
    Gollmer, Klaus-Uwe
    Naumann, Stefan
    Dartmann, Guido
    [J]. IEEE ACCESS, 2019, 7 : 155088 - 155106
  • [26] Impact Sound-Based Surface Identification Using Smart Audio Sensors With Deep Neural Networks
    Ryu, Semin
    Kim, Seung-Chan
    [J]. IEEE SENSORS JOURNAL, 2020, 20 (18) : 10936 - 10944
  • [27] Power Control of DC Microgrid Using DC Bus Signaling
    Zhang, Li
    Wu, Tianjin
    Xing, Yan
    Sun, Kai
    Gurrero, Josep. M.
    [J]. 2011 TWENTY-SIXTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC), 2011, : 1926 - 1932
  • [28] Learning to Make Feelings: Expressive Performance as a Part of a Machine Learning Tool for Sound-Based Emotion Control
    Kirke, Alexis
    Miranda, Eduardo R.
    Nasuto, Slawomir J.
    [J]. FROM SOUNDS TO MUSIC AND EMOTIONS, 2013, 7900 : 490 - 499
  • [29] SOUND POWER MEASUREMENTS AT RADIAL COMPRESSORS USING COMPRESSED SENSING BASED SIGNAL PROCESSING METHODS
    Hurst, Jakob
    Behn, Maximilian
    Tapken, Ulf
    Enghardt, Lars
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 2B, 2019,
  • [30] Predicting Foaming Slag Quality in Electric Arc Furnace Using Power Quality Indices and Fuzzy Method
    Dehkordi, Behzad Mirzaeian
    Moallem, Mehdi
    Parsapour, Amir
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (12) : 3845 - 3852