Tensor Convolutional Dictionary Learning With CP Low-Rank Activations

被引:1
|
作者
Humbert, Pierre [1 ]
Oudre, Laurent [1 ]
Vayatis, Nicolas [1 ]
Audiffren, Julien [2 ]
机构
[1] Univ Paris Saclay, ENS Paris Saclay, CNRS, Ctr Borelli, F-91190 Gif Sur Yvette, France
[2] Univ Fribourg, Cognit & Percept Lab, CH-1700 Fribourg, Switzerland
关键词
Tensors; Convolution; Convolutional codes; Machine learning; Signal processing algorithms; Convergence; Mathematical models; Convolutional dictionary learning; convolutional sparse coding; tensor; canonical polyadic decomposition; LEAST-SQUARES ALGORITHM; THRESHOLDING ALGORITHM; DECOMPOSITION; FACTORIZATION; REGRESSION;
D O I
10.1109/TSP.2021.3135695
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose to extend the standard Convolutional Dictionary Learning problem to a tensor representation where the activations are constrained to be "low-rank" through a Canonical Polyadic decomposition. We show that this additional constraint increases the robustness of the CDL with respect to noise and improve the interpretability of the final results. In addition, we discuss in detail the advantages of this representation and introduce two algorithms, based on ADMM or FISTA, that efficiently solve this problem. We show that by exploiting the low rank property of activations, they achieve lower complexity than the main CDL algorithms. Finally, we evaluate our approach on a wide range of experiments, highlighting the modularity and the advantages of this tensorial low-rank formulation.
引用
收藏
页码:785 / 796
页数:12
相关论文
共 50 条
  • [31] Low-Rank Deep Convolutional Neural Network for Multitask Learning
    Su, Fang
    Shang, Hai-Yang
    Wang, Jing-Yan
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2019, 2019
  • [32] Convolutional Low-Rank Tensor Representation for Structural Missing Traffic Data Imputation
    Li, Ben-Zheng
    Zhao, Xi-Le
    Chen, Xinyu
    Ding, Meng
    Liu, Ryan Wen
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 18847 - 18860
  • [33] Low-Rank Tensor Completion Method for Implicitly Low-Rank Visual Data
    Ji, Teng-Yu
    Zhao, Xi-Le
    Sun, Dong-Lin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1162 - 1166
  • [34] Iterative tensor eigen rank minimization for low-rank tensor completion
    Su, Liyu
    Liu, Jing
    Tian, Xiaoqing
    Huang, Kaiyu
    Tan, Shuncheng
    [J]. INFORMATION SCIENCES, 2022, 616 : 303 - 329
  • [35] NONPARAMETRIC LOW-RANK TENSOR IMPUTATION
    Bazerque, Juan Andres
    Mateos, Gonzalo
    Giannakis, Georgios B.
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 876 - 879
  • [36] Low-Rank Regression with Tensor Responses
    Rabusseau, Guillaume
    Kadri, Hachem
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [37] MULTIRESOLUTION LOW-RANK TENSOR FORMATS
    Mickelin, Oscar
    Karaman, Sertac
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (03) : 1086 - 1114
  • [38] Sparse and Low-Rank Tensor Decomposition
    Shah, Parikshit
    Rao, Nikhil
    Tang, Gongguo
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [39] LOW-RANK TENSOR HUBER REGRESSION
    Wei, Yangxin
    Luot, Ziyan
    Chen, Yang
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (02): : 439 - 458
  • [40] Low-Rank Tensor MMSE Equalization
    Ribeiro, Lucas N.
    de Almeida, Andre L. F.
    Mota, Joao C. M.
    [J]. 2019 16TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2019, : 511 - 516