Efficiency enhancement of ultra-thin Cu(In,Ga)Se2 solar cells: optimizing the absorber bandgap profile by numerical device simulations

被引:28
|
作者
Zheng, Xue [1 ,2 ]
Li, Weimin [1 ,2 ]
Aberle, Armin G. [1 ,2 ]
Venkataraj, Selvaraj [1 ]
机构
[1] Natl Univ Singapore, SERIS, Singapore 117574, Singapore
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
基金
新加坡国家研究基金会;
关键词
Ultra-thin CIGS solar cells; Bandgap grading; Ordered vacancy compound; GAP; THICKNESS;
D O I
10.1016/j.cap.2016.07.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thin-film chalcopyrite Cu(In1-x,Ga-x)Se (CIGS) solar cells have recently achieved an efficiency of similar to 22% at the lab scale, making the technology more promising for commercial applications than most other thin-film solar cells. Using numerical device simulations, this study provides approaches to enhance the efficiency of ultra-thin CIGS solar cells. Effects of various Ga grading profiles in the CIGS absorber and of surface bandgap modifications are simulated. Our simulation results reveal that, in ultra-thin CIGS solar cells, back grading is an effective and practical approach to increase the cell efficiency, while front grading is unfeasible due to unacceptable current and fill factor losses. The quality of the back surface is of particular importance in moderately graded cells, while interface and bulk defect properties dominate in extremely graded cells. By introducing an ordered vacancy compound (OVC) layer with a downwarwd-shifted valence band at the CIGS surface, the interface recombination losses can be significantly suppressed due to the reduced hole concentration. The thickness of the OVC layer and the valence band offset (VBO) between the OVC and CIGS materials are critical parameters for the cell efficiency. The simulations reveal that an optimized CIGS cell with a 300 nm thick CIGS absorber, a back-graded absorber profile and a 70 nm thick OVC layer at the CIGS surface can reach a 1-Sun efficiency of over 12%. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1334 / 1341
页数:8
相关论文
共 50 条
  • [1] Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells
    Mansfield, Lorelle M.
    Kanevce, Ana
    Harvey, Steven P.
    Bowers, Karen
    Beall, Carolyn
    Glynn, Stephen
    Repins, Ingrid L.
    PROGRESS IN PHOTOVOLTAICS, 2018, 26 (11): : 949 - 954
  • [2] Numerical Modelling of Ultra Thin Cu(In,Ga)Se2 Solar Cells
    Amin, Nowshad
    Chelvanathan, Puvaneswaran
    Hossain, M. Istiaque
    Sopian, Kamaruzzaman
    INTERNATIONAL CONFERENCE ON MATERIALS FOR ADVANCED TECHNOLOGIES 2011, SYMPOSIUM O, 2012, 15 : 291 - 298
  • [3] Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In, Ga)Se2 solar cells
    Vermang, Bart
    Watjen, Jorn Timo
    Fjallstrom, Viktor
    Rostvall, Fredrik
    Edoff, Marika
    Kotipalli, Ratan
    Henry, Frederic
    Flandre, Denis
    PROGRESS IN PHOTOVOLTAICS, 2014, 22 (10): : 1023 - 1029
  • [4] Rear contact passivation for high bandgap Cu(In,Ga)Se2 solar cells with varying absorber thickness and flat Ga profile
    Ledinek, Dorothea
    Salome, Pedro
    Hagglund, Carl
    Edoff, Marika
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 796 - 801
  • [5] Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga) Se2 solar cells
    Vermang, Bart
    Watjen, Jorn Timo
    Fjallstrom, Viktor
    Rostvall, Fredrik
    Edoff, Marika
    Gunnarsson, Rickard
    Pilch, Iris
    Helmersson, Ulf
    Kotipalli, Ratan
    Henry, Frederic
    Flandre, Denis
    THIN SOLID FILMS, 2015, 582 : 300 - 303
  • [6] Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se2 solar cells
    Yin, Guanchao
    Steigert, Alexander
    Andrae, Patrick
    Goebelt, Manuela
    Latzel, Michael
    Manley, Phillip
    Lauermann, Iver
    Christiansen, Silke
    Schmid, Martina
    APPLIED SURFACE SCIENCE, 2015, 355 : 800 - 804
  • [7] Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature
    Yin, G.
    Brackmann, V.
    Hoffmann, V.
    Schmid, M.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 132 : 142 - 147
  • [8] Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency
    Contreras, Miguel A.
    Mansfield, Lorelle M.
    Egaas, Brian
    Li, Jian
    Romero, Manuel
    Noufi, Rommel
    Rudiger-Voigt, Eveline
    Mannstadt, Wolfgang
    PROGRESS IN PHOTOVOLTAICS, 2012, 20 (07): : 843 - 850
  • [9] The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading
    Kim, Young-Ill
    Yang, Kee-Jeong
    Kim, Se-Yun
    Kang, Jin-Kyu
    Kim, Juran
    Jo, William
    Yoo, Hyesun
    Kim, JunHo
    Kim, Dae-Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 76 : 437 - 442
  • [10] Rear Contact Passivation for High Bandgap Cu(In,Ga)Se2 Solar Cells With a Flat Ga profile
    Ledinek, Dorothea
    Salome, Pedro
    Hagglund, Carl
    Zimmermann, Uwe
    Edoff, Marika
    IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (03): : 864 - 870