On Z2Z4-additive polycyclic codes and their Gray images

被引:0
|
作者
Wu, Rongsheng [1 ]
Shi, Minjia [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Z(2)Z(4)-additive polycyclic codes; Minimal generating sets; Duality; Optimal codes; Bounds; STRONG GROBNER BASES; MULTIVARIABLE CODES; FINITE QUOTIENTS; CYCLIC CODES; RINGS; POLYNOMIALS; DUALITY;
D O I
10.1007/s10623-021-00917-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we first generalize the polycyclic codes over finite fields to polycyclic codes over the mixed alphabet Z(2)Z(4), and we show that these codes can be identified as Z(4)[x]-submodules of R-alpha,R-beta with R-alpha,R-beta = Z(2)[x]/< t(1)(x)> x Z(4)[x]/< t(2)(x)>, where t(1)(x) and t(2)(x) are monic polynomials over Z(2) and Z(4), respectively. Then we provide the generator polynomials and minimal generating sets for this family of codes based on the strong Grobner basis. In particular, under the proper defined inner product, we study the dual of Z(2)Z(4)-additive polycyclic codes. Finally, we focus on the characterization of the Z(2)Z(4)-MDSS and MDSR codes, and as examples, we also present some (almost) optimal binary codes derived from the Z(2)Z(4)-additive polycyclic codes.
引用
收藏
页码:2551 / 2562
页数:12
相关论文
共 50 条
  • [31] The Structure of Z2Z2s-Additive Codes: Bounds on the Minimum Distance
    Aydogdu, Ismail
    Siap, Irfan
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (06): : 2271 - 2278
  • [32] The Structure of Z2[u]Z2[u, v]-additive Codes
    Annamalai, N.
    Durairajan, C.
    [J]. 2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 1351 - 1356
  • [33] Z4R-additive cyclic and constacyclic codes and MDSS codes
    Ghajari, Arazgol
    Khashyarmanesh, Kazem
    Abualrub, Taher
    Siap, Irfan
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)
  • [34] Separabilities of binary Gray codes designed over Z4
    Park, JP
    Bose, B
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 187 - 187
  • [35] On the additive (Z4-linear and non-Z4-linear) hadamard codes:: Rank and kernel
    Phelps, KT
    Rifà, J
    Villanueva, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (01) : 316 - 319
  • [36] Permutation decoding of Z2Z4-linear codes
    Joaquin Bernal, Jose
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Villanueva, Merce
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2015, 76 (02) : 269 - 277
  • [37] Z2Z4-linear codes: rank and kernel
    Fernandez-Cordoba, Cristina
    Pujol, Jaume
    Villanueva, Merce
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (01) : 43 - 59
  • [38] On Z2Z2[u3]-Additive Cyclic and Complementary Dual Codes
    Hou, Xiaotong
    Meng, Xiangrui
    Gao, Jian
    [J]. IEEE ACCESS, 2021, 9 : 65914 - 65924
  • [39] Binary images of cyclic codes over Z4
    Wolfmann, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) : 1773 - 1779
  • [40] ON RECURSIVE CONSTRUCTIONS OF Z2Z4Z8-LINEAR HADAMARD CODES
    Bhunia, Dipak k.
    Fernandez-cordoba, Cristina
    Villanueva, Merce
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (02) : 455 - 479