Robust Kriged Kalman Filtering

被引:0
|
作者
Baingana, Brian [1 ,2 ]
Anese, Emiliano Dall' [3 ]
Mateos, Gonzalo [4 ]
Giannakis, Georgios B. [1 ,2 ]
机构
[1] Univ Minnesota, Dept ECE, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Digital Technol Ctr, Minneapolis, MN 55455 USA
[3] Natl Renewable Energy Lab, Golden, CO USA
[4] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY USA
基金
美国国家科学基金会;
关键词
Robust estimation; kriging; Kalman filter; sparsity; IP path delay monitoring;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel l(1)-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.
引用
收藏
页码:1525 / 1529
页数:5
相关论文
共 50 条
  • [1] Spectrum Sensing for Cognitive Radios Using Kriged Kalman Filtering
    Kim, Seung-Jun
    Dall'Anese, Emiliano
    Giannakis, Georgios B.
    [J]. 2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2009, : 392 - 395
  • [2] Spectrum Sensing for Cognitive Radios Using Kriged Kalman Filtering
    Kim, Seung-Jun
    Dall'Anese, Emiliano
    Giannakis, Georgios B.
    [J]. 2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2009), 2009, : 392 - +
  • [3] Cooperative Spectrum Sensing for Cognitive Radios Using Kriged Kalman Filtering
    Kim, Seung-Jun
    Dall'Anese, Emiliano
    Giannakis, Georgios B.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (01) : 24 - 36
  • [4] The kriged Kalman filter
    Goodall, C
    Mardia, K
    Redfern, E
    Alonso, PJ
    [J]. MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 418 - 418
  • [5] The Kriged Kalman filter
    Kanti V. Mardia
    Colin Goodall
    Edwin J. Redfern
    Francisco J. Alonso
    [J]. Test, 1998, 7 (2) : 217 - 282
  • [6] ON ROBUST KALMAN FILTERING
    KOVACEVIC, B
    DUROVIC, Z
    GLAVASKI, S
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1992, 56 (03) : 547 - 562
  • [7] The Kriged Kalman filter
    Mardia, KV
    Goodall, C
    Redfern, EJ
    Alonso, FJ
    [J]. TEST, 1998, 7 (02) : 217 - 252
  • [8] Inference of Spatiotemporal Processes over Graphs via Kernel Kriged Kalman Filtering
    Ioannidis, Vassilis N.
    Romero, Daniel
    Giannakis, Georgios B.
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1679 - 1683
  • [9] The Kriged Kalman filter - Discussion
    Angulo, JM
    [J]. TEST, 1998, 7 (02) : 253 - 257
  • [10] Robust extended Kalman filtering
    Einicke, GA
    White, LB
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (09) : 2596 - 2599