Classification of Video Data Using Centroid Neural Network

被引:0
|
作者
Kim, Jae-Young [1 ]
Park, Dong-Chul [1 ]
Woo, Dong-Min [1 ]
机构
[1] Myong Ji Univ, Dept Informat Engn, Intelligent Comp Res Lab, Yongin, South Korea
关键词
video; classification; neural network; clustering; DIVERGENCE MEASURE; KERNEL;
D O I
10.1109/ISSPIT.2009.5407583
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A classification method of video data using Centroid Neural Network is proposed in this paper. The CNN algorithm is used for clustering the MPEG video data. In comparison with other conventional algorithms, The CNN requires neither a predetermined schedule for learning gain nor the total number of iterations for clustering. It always converges to sub-optimal solutions while conventional algorithms such as SOM may give unstable results depending on the initial learning gains and the total number of iterations. Experiments and results on several MPEG video data sets demonstrate that the classification model employing the CNN can archive improvements in terms of False Alarm Rate (FAR) over the models using the conventional k-means and SOM algorithms.
引用
收藏
页码:408 / 411
页数:4
相关论文
共 50 条
  • [31] Optimization of Neural Network Using Improved Bat Algorithm for Data Classification
    Bangyal, Waqas Haider
    Ahmad, Jamil
    Rauf, Hafiz Tayyab
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (04) : 670 - 681
  • [32] Classification of healthcare data using hybridised fuzzy and convolutional neural network
    Ramasamy, Balamurugan
    Hameed, Abdul Zubar
    [J]. HEALTHCARE TECHNOLOGY LETTERS, 2019, 6 (03) : 59 - 63
  • [33] A hybrid deep neural network for classification of schizophrenia using EEG Data
    Jie Sun
    Rui Cao
    Mengni Zhou
    Waqar Hussain
    Bin Wang
    Jiayue Xue
    Jie Xiang
    [J]. Scientific Reports, 11
  • [34] Transformer tap changing by data classification using artificial neural network
    Islam, MF
    Kamruzzaman, J
    Lu, G
    [J]. 2004 IEEE PES POWER SYSTEMS CONFERENCE & EXPOSITION, VOLS 1 - 3, 2004, : 1417 - 1422
  • [35] Classification accuracy improvement of neural network classifiers by using unlabeled data
    Fardanesh, MT
    Ersoy, OK
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (03): : 1020 - 1025
  • [36] NEURAL-NETWORK CLASSIFICATION OF ODORS USING STRUCTURAL FRAGMENT DATA
    DEVILLERS, J
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 134 - COMP
  • [37] Emotion Classification Based on Convolutional Neural Network Using Speech Data
    Vrebcevic, N.
    Mijic, I.
    Petrinovic, D.
    [J]. 2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1007 - 1012
  • [38] Classification of Ships Using Real and Simulated Data in a Convolutional Neural Network
    Odegaard, Nina
    Knapskog, Atle Onar
    Cochin, Christian
    Louvigne, Jean-Christophe
    [J]. 2016 IEEE RADAR CONFERENCE (RADARCONF), 2016, : 1068 - 1073
  • [39] Transient classification in LIGO data using difference boosting neural network
    Mukund, N.
    Abraham, S.
    Kandhasamy, S.
    Mitra, S.
    Philip, N. S.
    [J]. PHYSICAL REVIEW D, 2017, 95 (10)
  • [40] Corneal Topography Raw Data Classification Using a Convolutional Neural Network
    Zeboulon, Pierre
    Debellemaniere, Guillaume
    Bouvet, Magalie
    Gatinel, Damien
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2020, 219 : 33 - 39