Improved Disturbance Detection Technique for Power-Quality Analysis

被引:14
|
作者
Gomes Marques, Cristiano Augusto [1 ]
Ferreira, Danton Diego [2 ]
Freitas, Lucas Romero [3 ]
Duque, Carlos Augusto [3 ]
Ribeiro, Moises Vidal [3 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, BR-21941972 Rio De Janeiro, Brazil
[2] Univ Fed Lavras, BR-37200000 Lavras, MG, Brazil
[3] Univ Fed Juiz de Fora, Dept Elect Engn, BR-36036330 Juiz De Fora, MG, Brazil
关键词
Disturbance detection; higher order statistics; power quality (PQ);
D O I
10.1109/TPWRD.2010.2092571
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an improved technique for detecting disturbances in voltage signals for power quality analysis. The main advantage of the proposed technique lies in its capability to detect disturbances when power frequency is time-varying. In addition, the technique is capable of detecting disturbances in frames corresponding to 1/64 of the fundamental component. Simulation results indicate that the proposed technique can offer improved performance in comparison with previous one.
引用
收藏
页码:1286 / 1287
页数:2
相关论文
共 50 条
  • [11] Adaptive wavelet networks for power-quality detection and discrimination in a power system
    Lin, Chia-Hung
    Wang, Chia-Hao
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2006, 21 (03) : 1106 - 1113
  • [12] Mitigation of Power Quality Problems Using Unified Power Quality Conditioner by an Improved Disturbance Extraction Technique
    Alawadhi, Nabecl
    Elnady, A.
    [J]. 2017 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTING TECHNOLOGIES AND APPLICATIONS (ICECTA), 2017, : 225 - 229
  • [13] Wavelet-based fuzzy reasoning approach to power-quality disturbance recognition
    Zhu, TX
    Tso, SK
    Lo, KL
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2004, 19 (04) : 1928 - 1935
  • [14] A new power quality disturbance detection method based on the improved LMD
    Song, Haijun
    Huang, Chuanjin
    Liu, Hongchao
    Chen, Tiejun
    Li, Jingli
    Luo, Yong
    [J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2014, 34 (10): : 1700 - 1708
  • [15] An Improved Power Quality Disturbance Detection Using Deep Learning Approach
    Sekar, Kavaskar
    Kanagarathinam, Karthick
    Subramanian, Sendilkumar
    Venugopal, Ellappan
    Udayakumar, C.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [16] A Novel Reference Signal Generation Method for Power-Quality Improvement of Unified Power-Quality Conditioner
    Teke, Ahmet
    Saribulut, Lutfu
    Tumay, Mehmet
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2011, 26 (04) : 2205 - 2214
  • [17] Adaptive Prony Method for the Calculation of Power-Quality Indices in the Presence of Nonstationary Disturbance Waveforms
    Andreotti, A.
    Bracale, A.
    Caramia, P.
    Carpinelli, G.
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2009, 24 (02) : 874 - 883
  • [18] Power Quality Disturbance Detection Based on Improved Robust Random Cut Forest
    Zhang, Ge
    Bai, Feifei
    Cui, Yi
    Dart, David
    Yaghoobi, Jalil
    Zillmann, Matthew
    [J]. 2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 1697 - 1702
  • [19] Application of Improved LMD Algorithm in Signal Detection of Power Quality Disturbance in Microgrid
    Xu Y.
    Gao Y.
    Li Z.
    Xi L.
    [J]. Dianwang Jishu/Power System Technology, 2019, 43 (01): : 332 - 339
  • [20] Detection and classification of multiple power-quality disturbances with wavelet multiclass SVM
    Lin, Whei-Min
    Wu, Chien-Hsien
    Lin, Chia-Hung
    Cheng, Fu-Sheng
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2008, 23 (04) : 2575 - 2582